Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Complementary Dynamics via Skinning Eigenmodes (2303.11886v2)

Published 21 Mar 2023 in cs.GR

Abstract: We propose a reduced-space elasto-dynamic solver that is well suited for augmenting rigged character animations with secondary motion. At the core of our method is a novel deformation subspace based on Linear Blend Skinning that overcomes many of the shortcomings prior subspace methods face. Our skinning subspace is parameterized entirely by a set of scalar weights, which we can obtain through a small, material-aware and rig-sensitive generalized eigenvalue problem. The resulting subspace can easily capture rotational motion and guarantees that the resulting simulation is rotation equivariant. We further propose a simple local-global solver for linear co-rotational elasticity and propose a clustering method to aggregate per-tetrahedra non-linear energetic quantities. The result is a compact simulation that is fully decoupled from the complexity of the mesh.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Adobe Systems Inc. 2023. Mixamo. https://mixamo.com.
  2. Optimizing Cubature for Efficient Integration of Subspace Deformations. ACM Trans. Graph. 27, 5, Article 165 (dec 2008), 10 pages. https://doi.org/10.1145/1409060.1409118
  3. David Arthur and Sergei Vassilvitskii. 2007. k-means++: the advantages of careful seeding. In SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (New Orleans, Louisiana). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1027–1035.
  4. David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’98). Association for Computing Machinery, New York, NY, USA, 43–54. https://doi.org/10.1145/280814.280821
  5. Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (jul 2005), 982–990. https://doi.org/10.1145/1073204.1073300
  6. Jernej Barbič and Yili Zhao. 2011. Real-time Large-deformation Substructuring. ACM Trans. on Graphics (SIGGRAPH 2011) 30, 4 (2011), 91:1–91:7.
  7. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages. https://doi.org/10.1145/2601097.2601116
  8. Hyper-Reduced Projective Dynamics. ACM Trans. Graph. 37, 4, Article 80 (jul 2018), 13 pages. https://doi.org/10.1145/3197517.3201387
  9. Christopher Brandt and Klaus Hildebrandt. 2017. Compressed vibration modes of elastic bodies. Computer Aided Geometric Design 52-53 (03 2017). https://doi.org/10.1016/j.cagd.2017.03.004
  10. The Reduced Immersed Method for Real-Time Fluid-Elastic Solid Interaction and Contact Simulation. ACM Trans. Graph. 38, 6, Article 191 (nov 2019), 16 pages. https://doi.org/10.1145/3355089.3356496
  11. A Simple Geometric Model for Elastic Deformations. 29, 4, Article 38 (jul 2010), 6 pages. https://doi.org/10.1145/1778765.1778775
  12. Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal warping: real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics 11, 1 (2005), 91–101. https://doi.org/10.1109/TVCG.2005.13
  13. Nonlinear Compliant Modes for Large-Deformation Analysis of Flexible Structures. ACM Trans. Graph. 42, 2, Article 21 (nov 2022), 11 pages. https://doi.org/10.1145/3568952
  14. Sparse Meshless Models of Complex Deformable Solids. ACM Trans. Graph. 30, 4, Article 73 (jul 2011), 10 pages. https://doi.org/10.1145/2010324.1964968
  15. Frame-Based Elastic Models. ACM Trans. Graph. 30, 2, Article 15 (apr 2011), 12 pages. https://doi.org/10.1145/1944846.1944855
  16. Gene H. Golub. 1973. Some Modified Matrix Eigenvalue Problems. SIAM Rev. 15, 2 (1973), 318–334. https://doi.org/10.1137/1015032 arXiv:https://doi.org/10.1137/1015032
  17. Rig-Space Physics. ACM Trans. Graph. 31, 4, Article 72 (jul 2012), 8 pages. https://doi.org/10.1145/2185520.2185568
  18. Efficient simulation of secondary motion in rig-space. In Proceedings of the 12th ACM SIGGRAPH/eurographics symposium on computer animation. 165–171.
  19. David Harmon and Denis Zorin. 2013. Subspace Integration with Local Deformations. ACM Trans. Graph. 32, 4, Article 107 (jul 2013), 10 pages. https://doi.org/10.1145/2461912.2461922
  20. Interactive Surface Modeling Using Modal Analysis. ACM Trans. Graph. 30, 5, Article 119 (oct 2011), 11 pages. https://doi.org/10.1145/2019627.2019638
  21. Kevin Houston. 2017. Sequentially-Defined Compressed Modes via ADMM. In Proceedings of the Symposium on Geometry Processing: Posters (London, United Kingdom) (SGP ’17). Eurographics Association, Goslar, DEU, 1–2. https://doi.org/10.2312/sgp.20171201
  22. Interactive Shape Interpolation through Controllable Dynamic Deformation. IEEE Transactions on Visualization and Computer Graphics 17, 7 (2011), 983–992. https://doi.org/10.1109/TVCG.2010.109
  23. Fast Automatic Skinning Transformations. ACM Trans. Graph. 31, 4 (2012), to appear.
  24. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78.
  25. Doug James and Dinesh Pai. 1999. ARTDEFO: accurate real time deformable objects. Proc. of ACM SIGGRAPH 72, 65–72. https://doi.org/10.1145/311535.311542
  26. Doug L. James and Dinesh K. Pai. 2002. DyRT: Dynamic Response Textures for Real Time Deformation Simulation with Graphics Hardware. ACM Trans. Graph. 21, 3 (jul 2002), 582–585. https://doi.org/10.1145/566654.566621
  27. Geometric Skinning with Approximate Dual Quaternion Blending. ACM Trans. Graph. 27, 4 (2008), 105.
  28. Theodore Kim and David Eberle. 2020. Dynamic Deformables: Implementation and Production Practicalities (SIGGRAPH ’20). Association for Computing Machinery, New York, NY, USA, Article 23, 182 pages. https://doi.org/10.1145/3388769.3407490
  29. Theodore Kim and Doug L. James. 2011. Physics-Based Character Skinning Using Multi-Domain Subspace Deformations (SCA ’11). Association for Computing Machinery, New York, NY, USA, 63–72. https://doi.org/10.1145/2019406.2019415
  30. EigenSkin: Real Time Large Deformation Character Skinning in Hardware. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas) (SCA ’02). Association for Computing Machinery, New York, NY, USA, 153–159. https://doi.org/10.1145/545261.545286
  31. Medial Elastics: Efficient and Collision-Ready Deformation via Medial Axis Transform. ACM Trans. Graph. 39, 3, Article 20 (apr 2020), 17 pages. https://doi.org/10.1145/3384515
  32. Medial IPC: Accelerated Incremental Potential Contact with Medial Elastics. ACM Trans. Graph. 40, 4, Article 158 (jul 2021), 16 pages. https://doi.org/10.1145/3450626.3459753
  33. Torsten Langer and Hans-Peter Seidel. 2008. Higher Order Barycentric Coordinates. Comput. Graph. Forum 27, 2 (2008), 459–466.
  34. Surface Multigrid via Intrinsic Prolongation. ACM Trans. Graph. 40, 4, Article 80 (jul 2021), 13 pages. https://doi.org/10.1145/3450626.3459768
  35. Fast Simulation of Mass-Spring Systems. ACM Transactions on Graphics 32, 6 (Nov. 2013), 209:1–7. http://cg.cis.upenn.edu/publications/Liu-FMS Proceedings of ACM SIGGRAPH Asia 2013, Hong Kong.
  36. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 4, Article 116a (jul 2017), 16 pages. https://doi.org/10.1145/3072959.2990496
  37. Mediapipe: A framework for building perception pipelines. arXiv preprint arXiv:1906.08172 (2019).
  38. Efficient Elasticity for Character Skinning with Contact and Collisions. In ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH ’11). Association for Computing Machinery, New York, NY, USA, Article 37, 12 pages. https://doi.org/10.1145/1964921.1964932
  39. Localized manifold harmonics for spectral shape analysis. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 20–34.
  40. Position Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (apr 2007), 109–118. https://doi.org/10.1016/j.jvcir.2007.01.005
  41. Fast Approximation of Laplace‐Beltrami Eigenproblems. Computer Graphics Forum 37 (08 2018), 121–134. https://doi.org/10.1111/cgf.13496
  42. A. Pentland and J. Williams. 1989. Good Vibrations: Modal Dynamics for Graphics and Animation. SIGGRAPH Comput. Graph. 23, 3 (jul 1989), 207–214. https://doi.org/10.1145/74334.74355
  43. Velocity Skinning for Real-time Stylized Skeletal Animation. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 549–561.
  44. Breaking Good: Fracture Modes for Realtime Destruction. CoRR abs/2111.05249 (2021). arXiv:2111.05249 https://arxiv.org/abs/2111.05249
  45. Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Geometry Processing, Alexander Belyaev and Michael Garland (Eds.). The Eurographics Association. https://doi.org/10.2312/SGP/SGP07/109-116
  46. Surface-Only Dynamic Deformables using a Boundary Element Method. Computer Graphics Forum (2022). https://doi.org/10.1111/cgf.14625
  47. Simulating Articulated Subspace Self-Contact. ACM Trans. Graph. 33, 4, Article 106 (jul 2014), 9 pages. https://doi.org/10.1145/2601097.2601181
  48. Demetri Terzopoulos and Andrew Witkin. 1988. Physically Based Models with Rigid and Deformable Components. IEEE Comput. Graph. Appl. 8, 6 (nov 1988), 41–51. https://doi.org/10.1109/38.20317
  49. Mixed Variational Finite Elements for Implicit, General-Purpose Simulation of Deformables. CoRR abs/2202.00183 (2022). arXiv:2202.00183 https://arxiv.org/abs/2202.00183
  50. An Efficient Construction of Reduced Deformable Objects. ACM Trans. Graph. 32, 6, Article 213 (nov 2013), 10 pages. https://doi.org/10.1145/2508363.2508392
  51. Linear Subspace Design for Real-Time Shape Deformation. ACM Trans. Graph. 34, 4 (2015).
  52. Complementary Dynamics. ACM Transactions on Graphics (2020).
  53. A deep emulator for secondary motion of 3d characters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5932–5940.
Citations (17)

Summary

We haven't generated a summary for this paper yet.