Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analogical proportions II (2405.13461v1)

Published 22 May 2024 in cs.LO, cs.AI, cs.DM, and math.LO

Abstract: Analogical reasoning is the ability to detect parallels between two seemingly distant objects or situations, a fundamental human capacity used for example in commonsense reasoning, learning, and creativity which is believed by many researchers to be at the core of human and artificial general intelligence. Analogical proportions are expressions of the form ``$a$ is to $b$ what $c$ is to $d$'' at the core of analogical reasoning. The author has recently introduced an abstract algebraic framework of analogical proportions within the general setting of universal algebra. It is the purpose of this paper to further develop the mathematical theory of analogical proportions within that framework as motivated by the fact that it has already been successfully applied to logic program synthesis in artificial intelligence.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. Antić, C. (2022). Analogical proportions.  Annals of Mathematics and Artificial Intelligence, 90(6), 595–644. https://doi.org/10.1007/s10472-022-09798-y.
  2. Antić, C. (2023a). Algebraic anti-unification.  https://hal.science/hal-04207922.
  3. Antić, C. (2023b). Analogical proportions in monounary algebras.  Annals of Mathematics and Artificial Intelligence. https://doi.org/10.1007/s10472-023-09921-7.
  4. Antić, C. (2023c). Logic program proportions.  Annals of Mathematics and Artificial Intelligence. https://doi.org/10.1007/s10472-023-09904-8.
  5. Antić, C. (2023d). Proportoids.  https://arxiv.org/pdf/2210.01751.pdf.
  6. Antić, C. (2024). Boolean proportions.  Logical Methods in Computer Science, 20(2), 2:1 – 2:20. https://doi.org/10.46298/lmcs-20(2:2)2024.
  7. Baaz, M. (2005). Note on formal analogical reasoning in the juridical context.  In Ong, L. (Ed.), CSL 2005, pp. 18–26. Springer-Verlag, Berlin/Heidelberg.
  8. Analogy between concepts.  Artificial Intelligence, 275, 487–539.
  9. Automatic structures.  In LICS 2000, pp. 51–62. IEEE Computer Society.
  10. Finite presentations of infinite structures: Automata and interpretations.  Theory of Computing Systems, 37, 641–674.
  11. A Course in Universal Algebra. http://www.math.hawaii.edu/~ralph/Classes/619/univ-algebra.pdf.
  12. Tree Automata Techniques and Applications. https://hal.inria.fr/hal-03367725.
  13. When intelligence is just a matter of copying.  In Raedt, L. D., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., and Lucas, P. (Eds.), ECAI 2012, Vol. 242 of Frontiers in Artificial Intelligence and Applications, pp. 276–281.
  14. Galois theory for analogical classifiers.  Annals of Mathematics and Artificial Intelligence, 92, 29–47. https://doi.org/10.1007/s10472-023-09833-6.
  15. Courcelle, B. (1983). Fundamental properties of infinite trees.  Theoretical Computer Science, 25(2), 95–169.
  16. A logical approach to reasoning by analogy.  In McDermott, J. P. (Ed.), IJCAI 1987, pp. 264–270. Morgan Kaufmann.
  17. The structure-mapping engine: algorithm and examples.  Artificial Intelligence, 41(1), 1–63.
  18. Tree Automata (2 edition). https://arxiv.org/pdf/1509.06233.pdf.
  19. Gentner, D. (1983). Structure-mapping: a theoretical framework for analogy.  Cognitive Science, 7(2), 155–170.
  20. Gentner, D. (2012). Analogical reasoning.  In Encyclopedia of Human Behavior, pp. 130–136. Elsevier, Oxford UK.
  21. The Analogical Mind. Perspectives from Cognitive Science. MIT Press/Bradford Book, Cambridge MA.
  22. Analogical reasoning: a core of cognition.  Künstliche Intelligenz, 22(1), 8–12.
  23. Metaphors and heuristic-driven theory projection (HDTP).  Theoretical Computer Science, 354(1), 98–117.
  24. Hall, R. P. (1989). Computational approaches to analogical reasoning: a comparative analysis.  Artificial Intelligence, 39(1), 39–120.
  25. Héder, M. (2023). Explainable AI: A brief history of the concept.  ERCIM News, 134, 9–10.
  26. The copycat project: a model of mental fluidity and analogy-making.  In Fluid Concepts and Creative Analogies. Computer Models of the Fundamental Mechanisms of Thought, chap. 5, pp. 205–267. Basic Books, New York.
  27. Surfaces and Essences. Analogy as the Fuel and Fire of Thinking. Basic Books, New York.
  28. Huet, G. (1976). Résolution d’équations dans des langages d’ordre 1,2,…,ω𝜔\omegaitalic_ω. Ph.D. thesis, Université Paris VII.
  29. Klein, S. (1982). Culture, mysticism and social structure and the calculation of behavior.  In ECAI 1982, pp. 141–146.
  30. Koszowski, M. (2019). Analogical Reasoning in Law. Cambridge Scholars Publishing.
  31. Krieger, M. H. (2003). Doing Mathematics: Convention, Subject, Calculation, Analogy. World Scientific, New Jersey.
  32. Restricted higher-order anti-unification for analogy making.  In Orgun, M.,  and Thornton, J. (Eds.), AI 2007, LNAI 4830, pp. 273–282. Springer-Verlag, Berlin/Heidelberg.
  33. Lepage, Y. (2001). Analogy and formal languages.  Electronic Notes in Theoretical Computer Science, 53, 180–191.
  34. Lepage, Y. (2003). De L’Analogie. Rendant Compte de la Commutation en Linguistique. Habilitation à diriger les recherches, Université Joseph Fourier, Grenoble.
  35. Classifying and completing word analogies by machine learning.  International Journal of Approximate Reasoning, 132, 1–25.
  36. Handling analogical proportions in classical logic and fuzzy logics settings.  In Sossai, C.,  and Chemello, G. (Eds.), ECSQARU 2009, LNAI 5590, pp. 638–650. Springer-Verlag, Berlin/Heidelberg.
  37. Plotkin, G. D. (1970). A note on inductive generalization.  Machine Intelligence, 5, 153–163.
  38. Pólya, G. (1954). Mathematics and Plausible Reasoning. Volume I. Induction and Analogy in Mathematics, Vol. 1. Princeton University Press, Princeton, New Jersey.
  39. From analogical proportion to logical proportions.  Logica Universalis, 7, 441–505.
  40. A short introduction to computational trends in analogical reasoning.  In Prade, H.,  and Richard, G. (Eds.), Approaches to Analogical Reasoning: Current Trends, Studies in Computational Intelligence 548, pp. 1–22. Springer-Verlag, Berlin/Heidelberg.
  41. Homogenous and heterogenous logical proportions: an introduction.  In Gabbay, D. M.,  and Guenthner, F. (Eds.), Handbook of Philosophical Logic. Springer Nature Switzerland AG.
  42. Analogical proportions: why they are useful in AI.  In Zhou, Z.-H. (Ed.), IJCAI 2021, pp. 4568–4576.
  43. Reynolds, J. C. (1970). Transformational systems and the algebraic structure of atomic formulas.  Machine Intelligence, 5(1), 135–151.
  44. Formal models of analogical proportions.  Technical Report D008, Telecom ParisTech - École Nationale Supérieure de Télécommunications, Télécom Paris.
  45. Solving proportional analogies using E-generalization.  In Freksa, C., Kohlhase, M., and Schmill, K. (Eds.), KI 2006, LNAI 4314, pp. 64–75. Springer-Verlag.
  46. Winston, P. H. (1980). Learning and reasoning by analogy.  Communications of the ACM, 23(12), 689–703.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Christian Antić (20 papers)
Citations (3)