Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilingual analogical proportions via hedges (2305.05614v2)

Published 2 May 2023 in cs.LO and cs.AI

Abstract: Analogical proportions are expressions of the form ``$a$ is to $b$ what $c$ is to $d$'' at the core of analogical reasoning which itself is at the core of human and artificial intelligence. The author has recently introduced {\em from first principles} an abstract algebro-logical framework of analogical proportions within the general setting of universal algebra and first-order logic. In that framework, the source and target algebras have the {\em same} underlying language. The purpose of this paper is to generalize his unilingual framework to a bilingual one where the underlying languages may differ. This is achieved by using hedges in justifications of proportions. The outcome is a major generalization vastly extending the applicability of the underlying framework. In a broader sense, this paper is a further step towards a mathematical theory of analogical reasoning.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Antić, C. (2022). Analogical proportions.  Annals of Mathematics and Artificial Intelligence, 90(6), 595–644. https://doi.org/10.1007/s10472-022-09798-y.
  2. Antić, C. (2023a). Analogical proportions via abstract justifications.  https://hal.archives-ouvertes.fr/hal-03879901/document.
  3. Antić, C. (2023b). Boolean proportions.  https://arxiv.org/pdf/2109.00388.pdf.
  4. Antić, C. (2023c). Logic-based analogical proportions.  https://hal.science/hal-04005139.
  5. Antić, C. (2023d). Proportional algebras.  https://arxiv.org/pdf/2210.01751.pdf.
  6. Analogy between concepts.  Artificial Intelligence, 275, 487–539.
  7. Boden, M. A. (1998). Creativity and artificial intelligence.  Artificial Intelligence, 103(1-2), 347–356.
  8. A Course in Universal Algebra. http://www.math.hawaii.edu/~ralph/Classes/619/univ-algebra.pdf.
  9. Anti-unification and generalization: a survey.  In IJCAI 2023, pp. 6563–6573.
  10. Analogical reasoning: a core of cognition.  Künstliche Intelligenz, 22(1), 8–12.
  11. Hofstadter, D. (2001). Analogy as the core of cognition.  In Gentner, D., Holyoak, K. J., and Kokinov, B. K. (Eds.), The Analogical Mind: Perspectives from Cognitive Science, pp. 499–538. MIT Press/Bradford Book, Cambridge MA.
  12. Surfaces and Essences. Analogy as the Fuel and Fire of Thinking. Basic Books, New York.
  13. Krieger, M. H. (2003). Doing Mathematics: Convention, Subject, Calculation, Analogy. World Scientific, New Jersey.
  14. Anti-unification for unranked terms and hedges.  Journal of Automated Reasoning, 52, 155–190.
  15. Handling analogical proportions in classical logic and fuzzy logics settings.  In Sossai, C.,  and Chemello, G. (Eds.), ECSQARU 2009, LNAI 5590, pp. 638–650. Springer-Verlag, Berlin/Heidelberg.
  16. Pólya, G. (1954). Induction and Analogy in Mathematics, Vol. 1 of Mathematics and Plausible Reasoning. Princeton University Press, Princeton, New Jersey.
  17. Homogenous and heterogenous logical proportions: an introduction.  In Gabbay, D. M.,  and Guenthner, F. (Eds.), Handbook of Philosophical Logic. Springer Nature Switzerland AG.
  18. Analogical proportions: why they are useful in AI.  In Zhou, Z.-H. (Ed.), IJCAI 2021, pp. 4568–4576.
  19. Heuristic-driven theory projection: an overview.  In Prade, H.,  and Richard, G. (Eds.), Computational Approaches to Analogical Reasoning: Current Trends, Vol. 548 of Studies in Computational Intelligence, pp. 163–194. Springer-Verlag, Berlin/Heidelberg.
  20. Formal models of analogical proportions.  Technical Report D008, Telecom ParisTech - École Nationale Supérieure de Télécommunications, Télécom Paris.
  21. Winston, P. H. (1980). Learning and reasoning by analogy.  Communications of the ACM, 23(12), 689–703.
  22. Modelling semi-structured documents with hedges for deduction and induction.  In Rouveirol, C.,  and Sebag, M. (Eds.), ILP 2001, LNAI 2157, pp. 240–247. Springer-Verlag, Berlin, Heidelberg.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Christian Antić (20 papers)