Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Magnetic structure of EuCd$_2$Sb$_2$ single-crystal thin-film (2405.13330v1)

Published 22 May 2024 in cond-mat.mtrl-sci and cond-mat.mes-hall

Abstract: We investigate the magnetic order in single crystalline EuCd$_2$Sb$_2$ thin films using a combined theoretical and experimental approach. Resonant elastic x-ray scattering experiments reveal a sharp magnetic peak at $q = (0, 0, \frac{1}{2})$ below $T_N = 7.2$ K, indicative of interlayer antiferromagnetic ordering. Additionally, we observe a weak diffuse magnetic signal centered at $q = (0, 0, 1)$ that persists above $T_N$, up to $T_C \sim 11$ K. Our Monte-Carlo simulations of a classical spin model approximation of the Eu magnetic sublattice demonstrate that the diffuse signal can arise from ferromagnetic coupling in the top few layers due to surface oxidation. On the other hand, the bulk of the sample exhibits antiferromagnetic coupling between layers. Finally, our fit of the model parameters to the magnetic ordering temperatures, shed light on the exchange couplings that are key in stabilizing the observed composite magnetic order.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. H. Weyl,  Elektron und gravitation. I, Zeitschrift für Physik 56, 330 (1929).
  2. B. A. Bernevig, C. Felser, and H. Beidenkopf, Progress and prospects in magnetic topological materials, Nature 603, 41 (2022).
  3. Y. Tokura, K. Yasuda, and A. Tsukazaki, Magnetic topological insulators, Nature Reviews Physics 1, 126 (2019).
  4. N. Armitage, E. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Reviews of Modern Physics 90, 015001 (2018).
  5. B. Q. Lv, T. Qian, and H. Ding, Experimental perspective on three-dimensional topological semimetals, Rev. Mod. Phys. 93, 025002 (2021).
  6. E. Weschke and E. Schierle, The UE46 PGM-1 beamline at BESSY II, Journal of large-scale research facilities JLSRF 4, A127 (2018).
  7. J. P. Hill and D. F. McMorrow, Resonant Exchange Scattering: Polarization Dependence and Correlation Function, Acta Crystallographica Section A 52, 236 (1996).
  8. E. Heinrich, T. Posske, and B. Flebus, Topological magnetic phase transition in eu-based a-type antiferromagnets, Physical Review B 106, 10.1103/physrevb.106.214402 (2022).
  9. U. Wolff, Collective monte carlo updating for spin systems, Phys. Rev. Lett. 62, 361 (1989).
  10. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220, 671 (1983).
  11. J. Kent-Dobias and J. P. Sethna, Cluster representations and the wolff algorithm in arbitrary external fields, Phys. Rev. E 98, 063306 (2018).
  12. Manipulating magnetism in the topological semimetal EuCd2As2, Phys. Rev. B 101, 140402 (2020).
  13. B. Flebus, Magnetoresistance driven by the magnetic berezinskii-kosterlitz-thouless transition, Phys. Rev. B 104, L020408 (2021).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com