Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 68 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adaptive sampling-based optimization of quantics tensor trains for noisy functions: applications to quantum simulations (2405.12730v2)

Published 21 May 2024 in quant-ph, math-ph, and math.MP

Abstract: Tensor cross interpolation (TCI) is a powerful technique for learning a tensor train (TT) by adaptively sampling a target tensor based on an interpolation formula. However, when the tensor evaluations contain random noise, optimizing the TT is more advantageous than interpolating the noise. Here, we propose a new method that starts with an initial guess of TT and optimizes it using non-linear least-squares by fitting it to measured points obtained from TCI. We use quantics TCI (QTCI) in this method and demonstrate its effectiveness on sine and two-time correlation functions, with each evaluated with random noise. The resulting QTT exhibits increased robustness against noise compared to the QTCI method. Furthermore, we employ this optimized QTT of the correlation function in quantum simulation based on pseudo-imaginary-time evolution, resulting in ground-state energy with higher accuracy than the QTCI or Monte Carlo methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets