Cosserat elasticity as the weak-field limit of Einstein--Cartan relativity (2405.12188v1)
Abstract: The weak-field limit of Einstein--Cartan (EC) relativity is studied. The equations of EC theory are rewritten such that they formally resemble those of Einstein General Relativity (EGR); this allows ideas from post-Newtonian theory to be imported without essential change. The equations of motion are then written both at first post-Newtonian (1PN) order and at 1.5PN order. EC theory's 1PN equations of motion are found to be those of a micropolar/Cosserat elastic medium, along with a decoupled evolution equation for non-classical, spin-related fields. It seems that a necessary condition for these results to hold is that one chooses the non-classical fields to scale with the speed of light in a certain empirically reasonable way. Finally, the 1.5PN equations give greater insight into the coupling between energy-momentum and spin within slowly moving, weakly gravitating matter. Specifically, the weakly relativistic modifications to Cosserat theory involve a gravitational torque and an augmentation of the gravitational force due to a dynamic mass moment density' with an accompanying
dynamic mass moment density flux', and new forms of linear momentum density captured by a dynamic mass density flux' and a
dynamic momentum density'.
- E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée (Première partie), Annales Scientifiques de l’Ecole Normale Supérieure 58, 325 (1923).
- E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée (Première partie, suite), Annales Scientifiques de l’Ecole Normale Supérieure 59, 1 (1924).
- E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée (Deuxième partie), Annales Scientifiques de l’Ecole Normale Supérieure 60, 17 (1925).
- T. Kibble, Lorentz invariance and the gravitational field, J. Math. Phys 2, 212 (1961).
- D. Sciama, On the analogy between charge and spin in general relativity, in Recent Developments in General Relativity (Pergamon Press, 1962) pp. 415–439.
- D. W. Sciama, The physical structure of general relativity, Rev. Mod. Phys. 36, 463 (1964).
- A. Trautman, Einstein-cartan theory, in Encyclopedia of Mathematical Physics, edited by J.-P. Francoise, G. Naber, and S. T. Tsou (Elsevier, 2006) pp. 189–195.
- F. Hehl and S. Weinberg, Note on the torsion tensor, Physics Today 60, 16 (2007).
- N. J. Popławski, Nonsingular Dirac particles in spacetime with torsion, Physics Letters B. 690, 73 (2010).
- N. J. Popławski, Nonsingular, big-bounce cosmology from spinor–torsion coupling, Physical Review D. 85, 107502 (2012).
- E. Cosserat and F. Cosserat, Sur la théorie de l’élasticité, Ann. de l’Ecole Normale de Toulouse 10, 1 (1896).
- E. Cosserat and F. Cosserat, Sur la mécanique générale, C. Rend. hebd. des Séances de l’Acad. des Sci. 145, 1139 (1907).
- E. Cosserat and F. Cosserat, Théorie des corps déformables (A. Herman et Fils, Paris, 1909).
- C. Truesdell and R. Toupin, The classical field theories, in Encyclopedia of Physics, edited by S. Flügge (Springer-Verlag, 1960).
- L. Malvern, Introduction to the mechanics of a continuous medium (Prentice-Hall, 1969).
- W. Nowacki, Theory of asymmetric elasticity (Pergamon Press, 1986).
- G. A. Maugin and A. V. Metrikine, Mechanics of generalized continua (Springer, 2010).
- G. A. Maugin, Generalized continuum mechanics: what do we mean by that?, in Mechanics of Generalized Continua: One hundred years after the Cosserats (Springer, 2010) pp. 3–13.
- E. Poisson and C. M. Will, Gravity, Gravity (2014).
- R. M. Wald, General Relativity (University of Chicago Press, 1984).
- E. Battista and V. De Falco, First post-Newtonian generation of gravitational waves in Einstein-Cartan theory, Phys. Rev. D 104, 084067 (2021).
- F. Hehl, Spin and torsion in general relativity: I. Foundations, General relativity and gravitation 4, 333 (1973).
- F. Hehl, Spin and torsion in general relativity: II. Geometry and field equations, General relativity and gravitation 5, 491 (1974).
- F. Hehl and J. McCrea, Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories, Foundations of Physics 16, 267 (1986).
- C. Misner, K. Thorne, and J. Wheeler, Gravitation (Freeman, 1973).
- A. Einstein, Prinzipielles zur allgemeinen Relativitätstheorie, Annalen der Physik 55, 241 (1918).
- S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Addison Wesley, 2004).
- B. F. Schutz, A first course in General Relativity (Cambridge University Press, 2009) second Edition.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.