Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Cosserat elasticity as the weak-field limit of Einstein--Cartan relativity (2405.12188v1)

Published 20 May 2024 in gr-qc and physics.geo-ph

Abstract: The weak-field limit of Einstein--Cartan (EC) relativity is studied. The equations of EC theory are rewritten such that they formally resemble those of Einstein General Relativity (EGR); this allows ideas from post-Newtonian theory to be imported without essential change. The equations of motion are then written both at first post-Newtonian (1PN) order and at 1.5PN order. EC theory's 1PN equations of motion are found to be those of a micropolar/Cosserat elastic medium, along with a decoupled evolution equation for non-classical, spin-related fields. It seems that a necessary condition for these results to hold is that one chooses the non-classical fields to scale with the speed of light in a certain empirically reasonable way. Finally, the 1.5PN equations give greater insight into the coupling between energy-momentum and spin within slowly moving, weakly gravitating matter. Specifically, the weakly relativistic modifications to Cosserat theory involve a gravitational torque and an augmentation of the gravitational force due to a dynamic mass moment density' with an accompanyingdynamic mass moment density flux', and new forms of linear momentum density captured by a dynamic mass density flux' and adynamic momentum density'.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée (Première partie), Annales Scientifiques de l’Ecole Normale Supérieure 58, 325 (1923).
  2. E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée (Première partie, suite), Annales Scientifiques de l’Ecole Normale Supérieure 59, 1 (1924).
  3. E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée (Deuxième partie), Annales Scientifiques de l’Ecole Normale Supérieure 60, 17 (1925).
  4. T. Kibble, Lorentz invariance and the gravitational field, J. Math. Phys 2, 212 (1961).
  5. D. Sciama, On the analogy between charge and spin in general relativity, in Recent Developments in General Relativity (Pergamon Press, 1962) pp. 415–439.
  6. D. W. Sciama, The physical structure of general relativity, Rev. Mod. Phys. 36, 463 (1964).
  7. A. Trautman, Einstein-cartan theory, in Encyclopedia of Mathematical Physics, edited by J.-P. Francoise, G. Naber, and S. T. Tsou (Elsevier, 2006) pp. 189–195.
  8. F. Hehl and S. Weinberg, Note on the torsion tensor, Physics Today 60, 16 (2007).
  9. N. J. Popławski, Nonsingular Dirac particles in spacetime with torsion, Physics Letters B. 690, 73 (2010).
  10. N. J. Popławski, Nonsingular, big-bounce cosmology from spinor–torsion coupling, Physical Review D. 85, 107502 (2012).
  11. E. Cosserat and F. Cosserat, Sur la théorie de l’élasticité, Ann. de l’Ecole Normale de Toulouse 10, 1 (1896).
  12. E. Cosserat and F. Cosserat, Sur la mécanique générale, C. Rend. hebd. des Séances de l’Acad. des Sci. 145, 1139 (1907).
  13. E. Cosserat and F. Cosserat, Théorie des corps déformables (A. Herman et Fils, Paris, 1909).
  14. C. Truesdell and R. Toupin, The classical field theories, in Encyclopedia of Physics, edited by S. Flügge (Springer-Verlag, 1960).
  15. L. Malvern, Introduction to the mechanics of a continuous medium (Prentice-Hall, 1969).
  16. W. Nowacki, Theory of asymmetric elasticity (Pergamon Press, 1986).
  17. G. A. Maugin and A. V. Metrikine, Mechanics of generalized continua (Springer, 2010).
  18. G. A. Maugin, Generalized continuum mechanics: what do we mean by that?, in Mechanics of Generalized Continua: One hundred years after the Cosserats (Springer, 2010) pp. 3–13.
  19. E. Poisson and C. M. Will, Gravity, Gravity  (2014).
  20. R. M. Wald, General Relativity (University of Chicago Press, 1984).
  21. E. Battista and V. De Falco, First post-Newtonian generation of gravitational waves in Einstein-Cartan theory, Phys. Rev. D 104, 084067 (2021).
  22. F. Hehl, Spin and torsion in general relativity: I. Foundations, General relativity and gravitation 4, 333 (1973).
  23. F. Hehl, Spin and torsion in general relativity: II. Geometry and field equations, General relativity and gravitation 5, 491 (1974).
  24. F. Hehl and J. McCrea, Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories, Foundations of Physics 16, 267 (1986).
  25. C. Misner, K. Thorne, and J. Wheeler, Gravitation (Freeman, 1973).
  26. A. Einstein, Prinzipielles zur allgemeinen Relativitätstheorie, Annalen der Physik 55, 241 (1918).
  27. S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Addison Wesley, 2004).
  28. B. F. Schutz, A first course in General Relativity (Cambridge University Press, 2009) second Edition.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com