Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Inequalities between Dirichlet and Neumann eigenvalues of the magnetic Laplacian (2405.12077v1)

Published 20 May 2024 in math.SP, math-ph, math.AP, and math.MP

Abstract: We consider the magnetic Laplacian with the homogeneous magnetic field in two and three dimensions. We prove that the $(k+1)$-th magnetic Neumann eigenvalue of a bounded convex planar domain is not larger than its $k$-th magnetic Dirichlet eigenvalue. In three dimensions, we restrict our attention to convex domains, which are invariant under rotation by an angle of $\pi$ around an axis parallel to the magnetic field. For such domains, we prove that the $(k+2)$-th magnetic Neumann eigenvalue is not larger than the $k$-th magnetic Dirichlet eigenvalue provided that this Dirichlet eigenvalue is simple. The proofs rely on a modification of the strategy due to Levine and Weinberger.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets