Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Energy Extraction from a Kerr Black Hole via Magnetic Reconnection within the Plunging Region (2405.11488v2)

Published 19 May 2024 in gr-qc and astro-ph.HE

Abstract: Magnetic reconnection within a highly magnetized plasma has been seen as a viable mechanism to extract the energy from a rotating black hole, as it can generate negative energy plasmoids in the ergoregion. For a typical accreting black hole, the ergoregion is filled with bulk plasma plunging from the innermost-stable-circular orbit (ISCO). In this study, we present an analytical study of the energy extraction via magnetic reconnection process in the plunging region. In contrast to the toroidal plasma, where the magnetic field cannot be derived from the MHD scheme, the magnetic field in the plunging plasma was determined by the ideal-MHD condition. We derive the global magnetic field structure in a fast reconnection model, and we read the expressions for the energies of plasmoids ejected from the reconnection region, for general stationary and axisymmetric spacetimes. Then, we demonstrate the behaviors of ejected energies varying with the reconnection locations in the Kerr spacetime, and identify the region where a negative-energy plasmoid can be produced. We find that for a certain magnetization there exists a critical value of the black hole spin, beyond which the energy extraction can occur, and the energy extraction is most efficient for the near-extreme black hole. Moreover, we study the conditions necessary for a plasmoid with positive energy to escape to the infinity, a crucial requirement for effective energy extractions. Considering the escaping conditions, we provide the parameter space in the radius-spin plane in which the energy extraction mechanism is effective.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. D. Christodoulou, “Reversible and irreversible transforations in black hole physics,” Phys. Rev. Lett. 25 (1970) 1596–1597.
  2. R. M. Wald, “Energy Limits on the Penrose Process,” Astrophys. J. 191 (1974) 231.
  3. R. Brito, V. Cardoso, and P. Pani, “Superradiance: New Frontiers in Black Hole Physics,” Lect. Notes Phys. 906 (2015) pp.1–237, arXiv:1501.06570 [gr-qc].
  4. R. D. Blandford and R. L. Znajek, “Electromagnetic extractions of energy from Kerr black holes,” Mon. Not. Roy. Astron. Soc. 179 (1977) 433–456.
  5. S. S. Komissarov, “Observations of the Blandford-Znajek and the MHD Penrose processes in computer simulations of black hole magnetospheres,” Mon. Not. Roy. Astron. Soc. 359 (2005) 801–808, arXiv:astro-ph/0501599.
  6. K. Parfrey, A. Philippov, and B. Cerutti, “First-Principles Plasma Simulations of Black-Hole Jet Launching,” Phys. Rev. Lett. 122 no. 3, (2019) 035101, arXiv:1810.03613 [astro-ph.HE].
  7. R.-S. Lu et al., “A ring-like accretion structure in M87 connecting its black hole and jet,” Nature 616 no. 7958, (2023) 686–690, arXiv:2304.13252 [astro-ph.HE].
  8. S. Koide and K. Arai, “Energy Extraction from a Rotating Black Hole by Magnetic Reconnection in Ergosphere,” Astrophys. J. 682 (2008) 1124, arXiv:0805.0044 [astro-ph].
  9. E. Zweibel and M. Yamada, “Magnetic reconnection in astrophysical and laboratory plasmas,” Annual Review of Astronomy and Astrophysics - ANNU REV ASTRON ASTROPHYS 47 (09, 2009) 291–332.
  10. P. A. Sweet, “The Neutral Point Theory of Solar Flares,” in Electromagnetic Phenomena in Cosmical Physics, B. Lehnert, ed., vol. 6, p. 123. Jan., 1958.
  11. H. E. Petschek, “Magnetic Field Annihilation,” in NASA Special Publication, vol. 50, p. 425. 1964.
  12. Y. E. Lyubarsky, “On the relativistic magnetic reconnection,” Mon. Not. Roy. Astron. Soc. 358 (2005) 113–119, arXiv:astro-ph/0501392.
  13. L. Comisso and F. A. Asenjo, “Magnetic Reconnection as a Mechanism for Energy Extraction from Rotating Black Holes,” Phys. Rev. D 103 no. 2, (2021) 023014, arXiv:2012.00879 [astro-ph.HE].
  14. M. Khodadi, “Magnetic reconnection and energy extraction from a spinning black hole with broken Lorentz symmetry,” Phys. Rev. D 105 no. 2, (2022) 023025, arXiv:2201.02765 [gr-qc].
  15. A. Carleo, G. Lambiase, and L. Mastrototaro, “Energy extraction via magnetic reconnection in Lorentz breaking Kerr–Sen and Kiselev black holes,” Eur. Phys. J. C 82 no. 9, (2022) 776, arXiv:2206.12988 [gr-qc].
  16. S.-W. Wei, H.-M. Wang, Y.-P. Zhang, and Y.-X. Liu, “Effects of tidal charge on magnetic reconnection and energy extraction from spinning braneworld black hole,” JCAP 04 no. 04, (2022) 050, arXiv:2201.12729 [gr-qc].
  17. W. Liu, “Energy Extraction via Magnetic Reconnection in the Ergosphere of a Rotating Non-Kerr Black Hole,” Astrophys. J. 925 no. 2, (2022) 149, arXiv:2204.07338 [astro-ph.HE].
  18. C.-H. Wang, C.-Q. Pang, and S.-W. Wei, “Extracting energy via magnetic reconnection from Kerr–de Sitter black holes,” Phys. Rev. D 106 no. 12, (2022) 124050, arXiv:2209.08837 [gr-qc].
  19. Z. Li, X.-K. Guo, and F. Yuan, “Energy extraction from rotating regular black hole via Comisso-Asenjo mechanism,” arXiv:2304.08831 [gr-qc].
  20. Z. Li and F. Yuan, “Energy extraction via Comisso-Asenjo mechanism from rotating hairy black hole,” arXiv:2304.12553 [gr-qc].
  21. X. Ye, C.-H. Wang, and S.-W. Wei, “Extracting spinning wormhole energy via magnetic reconnection,” arXiv:2306.12097 [gr-qc].
  22. M. Khodadi, D. F. Mota, and A. Sheykhi, “Harvesting energy driven by Comisso-Asenjo process from Kerr-MOG black holes,” JCAP 10 (2023) 034, arXiv:2307.00478 [astro-ph.HE].
  23. S. Shaymatov, M. Alloqulov, B. Ahmedov, and A. Wang, “A Kerr-Newman-MOG black hole’s impact on the magnetic reconnection,” arXiv:2307.03012 [gr-qc].
  24. S.-J. Zhang, “Energy extraction via magnetic reconnection in Konoplya-Rezzolla-Zhidenko parametrized black holes,” Phys. Rev. D 109 no. 8, (2024) 084066, arXiv:2402.15050 [gr-qc].
  25. A. Mummery and S. Balbus, “Inspirals from the Innermost Stable Circular Orbit of Kerr Black Holes: Exact Solutions and Universal Radial Flow,” Phys. Rev. Lett. 129 no. 16, (2022) 161101, arXiv:2209.03579 [gr-qc].
  26. Y. Liu and B. Sun, “Analytical solutions of equatorial geodesic motion in Kerr spacetime*,” Chin. Phys. C 48 no. 4, (2024) 045107, arXiv:2305.11045 [gr-qc].
  27. M. Machida and R. Matsumoto, “Global three - dimensional MHD simulations of black hole accretion disks: X-ray flares in the plunging region,” Astrophys. J. 585 (2003) 429–442, arXiv:astro-ph/0211240.
  28. C. S. Reynolds, D. Garofalo, and M. C. Begelman, “Trapping of magnetic flux by the plunge region of a black hole accretion disk,” Astrophys. J. 651 (2006) 1023–1030, arXiv:astro-ph/0607381.
  29. Y. Zhu, S. W. Davis, R. Narayan, A. K. Kulkarni, R. F. Penna, and J. E. McClintock, “The Eye of the Storm: Light from the Inner Plunging Region of Black Hole Accretion Discs,” Mon. Not. Roy. Astron. Soc. 424 (2012) 2504, arXiv:1202.1530 [astro-ph.HE].
  30. D. R. Wilkins, C. S. Reynolds, and A. C. Fabian, “Venturing beyond the ISCO: Detecting X-ray emission from the plunging regions around black holes,” Mon. Not. Roy. Astron. Soc. 493 no. 4, (2020) 5532–5550, arXiv:2003.00019 [astro-ph.HE].
  31. A. M. Hankla, N. Scepi, and J. Dexter, “Non-thermal emission from the plunging region: a model for the high-energy tail of black hole X-ray binary soft states,” Mon. Not. Roy. Astron. Soc. 515 no. 1, (2022) 775–784, arXiv:2206.12018 [astro-ph.HE].
  32. J. Dong, G. Mastroserio, J. A. Garcıa, A. Ingram, E. Nathan, and R. Connors, “X-ray Reflection from the Plunging Region of Black Hole Accretion Disks,” arXiv:2312.09210 [astro-ph.HE].
  33. R. Ruffini and J. R. Wilson, “Relativistic Magnetohydrodynamical Effects of Plasma Accreting Into a Black Hole,” Phys. Rev. D 12 (1975) 2959.
  34. Y.-H. Liu, M. Hesse, F. Guo, W. Daughton, H. Li, P. A. Cassak, and M. A. Shay, “Why does steady-state magnetic reconnection have a maximum local rate of order 0.1?,” Phys. Rev. Lett. 118 no. 8, (2017) 085101, arXiv:1611.07859 [physics.plasm-ph].
  35. E. N. Parker, “Sweet’s Mechanism for Merging Magnetic Fields in Conducting Fluids,” Journal of Geophysical Research 62 no. 4, (Dec., 1957) 509–520.
  36. E. N. Parker, “The Solar-Flare Phenomenon and the Theory of Reconnection and Annihiliation of Magnetic Fields.,” Astrophys. J. 8 (July, 1963) 177.
  37. D. Biskamp, “Magnetic reconnection via current sheets,” Physics of Fluids 29 no. 5, (May, 1986) 1520–1531.
  38. T. Sato and T. Hayashi, “Externally driven magnetic reconnection and a powerful magnetic energy converter,” Physics of Fluids 22 no. 6, (June, 1979) 1189–1202.
  39. R. Narayan, I. V. Igumenshchev, and M. A. Abramowicz, “Magnetically arrested disk: an energetically efficient accretion flow,” Publ. Astron. Soc. Jap. 55 (2003) L69, arXiv:astro-ph/0305029.
  40. A. Tchekhovskoy, R. Narayan, and J. C. McKinney, “Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole,” Mon. Not. Roy. Astron. Soc. 418 no. 1, (Nov., 2011) L79–L83, arXiv:1108.0412 [astro-ph.HE].
  41. E. R. Priest and T. G. Forbes, “New models for fast steady state magnetic reconnection,” Journal of Geophysical Research: Space Physics 91 no. A5, (1986) 5579–5588, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JA091iA05p05579. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA091iA05p05579.
  42. V. Titov and E. Priest, “Linear theory of steady x-point magnetic reconnection,” Advances in Space Research 19 no. 12, (1997) 1777–1780. https://www.sciencedirect.com/science/article/pii/S0273117797000744. Proceedings of the D0.4 Symposium of COSPAR Scientific Commission D.
  43. Y. Hou, Z. Zhang, M. Guo, and B. Chen, “A new analytical model of magnetofluids surrounding rotating black holes,” JCAP 02 (2024) 030, arXiv:2309.13304 [gr-qc].
  44. S. Chandrasekhar, The Mathematical Theory of Black Holes. International series of monographs on physics. Clarendon Press, 1998. https://books.google.co.jp/books?id=LBOVcrzFfhsC.
  45. J. M. Bardeen and G. T. Horowitz, “The Extreme Kerr throat geometry: A Vacuum analog of AdS(2) x S**2,” Phys. Rev. D 60 (1999) 104030, arXiv:hep-th/9905099.
  46. H. Yang, F. Yuan, H. Li, Y. Mizuno, F. Guo, R. Lu, L. C. Ho, X. Lin, A. A. Zdziarski, and J. Wang, “Modeling the inner part of the jet in M87: Confronting jet morphology with theory,” Sci. Adv. 10 no. 12, (2024) adn3544, arXiv:2403.15950 [astro-ph.HE].
  47. B. Ripperda, F. Bacchini, and A. Philippov, “Magnetic Reconnection and Hot Spot Formation in Black Hole Accretion Disks,” Astrophys. J. 900 no. 2, (2020) 100, arXiv:2003.04330 [astro-ph.HE].
  48. N. Aimar, A. Dmytriiev, F. H. Vincent, I. E. Mellah, T. Paumard, G. Perrin, and A. Zech, “Magnetic reconnection plasmoid model for Sagittarius A* flares,” Astron. Astrophys. 672 (2023) A62, arXiv:2301.11874 [astro-ph.HE].
  49. Event Horizon Telescope Collaboration, K. Akiyama et al., “First Sagittarius A* Event Horizon Telescope Results. VII. Polarization of the Ring,” Astrophys. J. Lett. 964 no. 2, (2024) L25.
  50. GRAVITY Collaboration, R. Abuter et al., “Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA,” Astron. Astrophys. 618 (2018) L10, arXiv:1810.12641 [astro-ph.GA].
  51. R. Emami et al., “Tracing Hot Spot Motion in Sagittarius A* Using the Next-Generation Event Horizon Telescope (ngEHT),” Galaxies 11 no. 1, (2023) 23, arXiv:2211.06773 [astro-ph.GA].
Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.