Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly self-similar blowup of generalized axisymmetric Navier-Stokes equations (2405.10916v3)

Published 17 May 2024 in math.AP, cs.NA, and math.NA

Abstract: We numerically investigate the nearly self-similar blowup of the generalized axisymmetric Navier--Stokes equations. First, we rigorously derive the axisymmetric Navier--Stokes equations with swirl in both odd and even dimensions, marking the first such derivation for dimensions greater than three. Building on this, we generalize the equations to arbitrary positive real-valued dimensions, preserving many known properties of the 3D axisymmetric Navier--Stokes equations. To address scaling instability, we dynamically vary the space dimension to balance advection scaling along the r and z directions. A major contribution of this work is the development of a novel two-scale dynamic rescaling formulation, leveraging the dimension as an additional degree of freedom. This approach enables us to demonstrate a one-scale self-similar blowup with solution-dependent viscosity. Notably, the self-similar profile satisfies the axisymmetric Navier-Stokes equations with constant viscosity. We observe that the effective dimension is approximately 3.188 and appears to converge toward 3 as background viscosity diminishes. Furthermore, we introduce a rescaled Navier--Stokes model derived by dynamically rescaling the axial velocity in 3D. This model retains essential properties of 3D Navier-Stokes. Our numerical study shows that this rescaled Navier--Stokes model with two constant viscosity coefficients exhibits a nearly self-similar blowup with maximum vorticity growth on the order of O(10{30}).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (78)
  1. Remarks on the breakdown of smooth solutions for the 3333-D Euler equations. Commun. Math. Phys., 94(1):61–66, 1984.
  2. Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids, 6:2757–2784, 1994.
  3. Potential singularity mechanism for the Euler equations. Phys. Rev. Fluids, 1:084503, 2016.
  4. Formation of shocks for 2D isentropic compressible Euler. Communications on Pure and Applied Mathematics.
  5. Formation of point shocks for 3D compressible Euler. arXiv preprint arXiv:1912.04429, 2019.
  6. Partial regularity of suitable weak solutions of the Navier–Stokes equations. CPAM, 35(6):771–831, 1982.
  7. R. E. Caflisch. Singularity formation for complex solutions of the 3D incompressible Euler equations. Physica D: Nonlinear Phenomena, 67(1-3):1–18, 1993.
  8. R. E. Caflisch and O. Orrelana. Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Appl. Math., 20(2):249–510, 1989.
  9. Lower bounds on the blow-up rate of the axisymmetric Navier–Stokes equations II. Commun. PDEs, 34(3):203–232, 2009.
  10. Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations. Intern. Math. Res. Notices, 2008:rnn016, 2008.
  11. J. Chen. Remarks on the smoothness of the C1,αsuperscript𝐶1𝛼{C}^{1,\alpha}italic_C start_POSTSUPERSCRIPT 1 , italic_α end_POSTSUPERSCRIPT asymptotically self-similar singularity in the 3D Euler and 2D Boussinesq equations. arXiv preprint arXiv:2309.00150, 2023.
  12. J. Chen and T. Y. Hou. Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data II: Rigorous numerics. arXiv preprint: arXiv:2305.05660 [math.AP].
  13. J. Chen and T. Y. Hou. Finite time blowup of 2222D Boussinesq and 3333D Euler equations with C1,αsuperscript𝐶1𝛼{C}^{1,\alpha}italic_C start_POSTSUPERSCRIPT 1 , italic_α end_POSTSUPERSCRIPT velocity and boundary. CMP, 383(3):1559–1667, 2021.
  14. J. Chen and T. Y. Hou. Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data I: Analysis. arXiv preprint: arXiv:2210.07191v3 [math.AP], 2022.
  15. Asymptotically self-similar blowup of the Hou-Luo model for the 3333D Euler equations. arXiv:2106.05422 [math.AP], 2021.
  16. On the finite time blowup of the De Gregorio model for the 3333D Euler equation. CPAM, https://doi.org/10.1002/cpa.21991, 2021.
  17. A. Cheskidov. Blow-up in finite time for the dyadic model of the Navier–Stokes equations. AMS Tran., 360:5101–5120, 2008.
  18. On the finite-time blowup of a 1111D model for the 3333D axisymmetric Euler equations. CPAM, 70(11):2218–2243, 2017.
  19. Finite time blow up for a 1111D model of 2222D Boussinesq system. CMP, 334(3):1667–1679, 2015.
  20. Geometric constraints on potentially singular solutions for the 3333-D Euler equations. Commun. PDEs, 21:559–571, 1996.
  21. D. Córdoba and L. Martínez-Zoroa. Blow-up for the incompressible 3d-euler equations with uniform C1,1/2−ϵ∩l2superscript𝐶112italic-ϵsuperscript𝑙2{C}^{1,1/2-\epsilon}\cap l^{2}italic_C start_POSTSUPERSCRIPT 1 , 1 / 2 - italic_ϵ end_POSTSUPERSCRIPT ∩ italic_l start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT force. arXiv preprint arXiv:2309.08495, 2023.
  22. Finite time singularities to the 3D incompressible Euler equations for solutions in C1,α∩C∞⁢(R3\{0})∩L2superscript𝐶1𝛼superscript𝐶\superscript𝑅30superscript𝐿2{C}^{1,\alpha}\cap{C}^{\infty}({R}^{3}\backslash\{0\})\cap{L}^{2}italic_C start_POSTSUPERSCRIPT 1 , italic_α end_POSTSUPERSCRIPT ∩ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT \ { 0 } ) ∩ italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. arXiv preprint arXiv:2308.12197, 2023.
  23. Geometric properties and non-blowup of 3333D incompressible Euler flow. Commun. PDEs, 30:225–243, 2005.
  24. T. D. Drivas and T. Elgindi. Singularity formation in the incompressible Euler equation in finite and infinite time. EMS Surveys in Mathematical Sciences, 10(1):1–100, 2023.
  25. W. E and C.-W. Shu. Small-scale structures in Boussinesq convection. Phys. Fluids, 6:49–58, 1994.
  26. T. M. Elgindi. Finite-time singularity formation for C1,αsuperscript𝐶1𝛼{C}^{1,\alpha}italic_C start_POSTSUPERSCRIPT 1 , italic_α end_POSTSUPERSCRIPT solutions to the incompressible euler equations on ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Annals of Mathematics, 194(3):647–727, 2021.
  27. On the stability of self-similar blow-up for C1,αsuperscript𝐶1𝛼{C}^{1,\alpha}italic_C start_POSTSUPERSCRIPT 1 , italic_α end_POSTSUPERSCRIPT solutions to the incompressible Euler equations on R3superscript𝑅3{R}^{3}italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. arXiv:1910.14071, 2019.
  28. T. M. Elgindi and F. Pasqualotto. From instability to singularity formation in incompressible fluids. arXiv preprint arXiv:2310.19780, 2023.
  29. T. M. Elgindi and F. Pasqualotto. Invertibility of a linearized boussinesq flow: a symbolic approach. arXiv preprint arXiv:2310.19781, 2023.
  30. L3,∞subscript𝐿3{L}_{3,\infty}italic_L start_POSTSUBSCRIPT 3 , ∞ end_POSTSUBSCRIPT-solutions to the Navier–Stokes equations and backward uniqueness. Russian Mathematical Surveys., 58(2):211–250, 2003.
  31. C. Fefferman. Existence and smoothness of the Navier–Stokes equation. The millennium prize problems, pages 57–67, 2006.
  32. J. Gibbon. The three-dimensional Euler equations: Where do we stand? Physica D, 237:1894–1904, 2008.
  33. R. Grauer and T. C. Sideris. Numerical computation of 3333D incompressible ideal fluids with swirl. Phys. Rev. Lett., 67:3511–3514, 1991.
  34. E. Hopf. über die anfangswertaufgabe für die hydrodynamischen grundgleichungen. Math. Nachr., 4:213–231, 1951.
  35. T. Y. Hou. Potential singularity of the 3333D Euler equations in the interior domain. Found Comput Math, 23:2203–2249, 2023.
  36. T. Y. Hou. The potentially singular behavior of the 3333D Navier–Stokes equations. Found Comput Math, 23:2251–2299, 2023.
  37. T. Y. Hou and D. Huang. A potential two-scale traveling wave asingularity for 3333D incompressible Euler equations. Physica D, 435:133257, 2022.
  38. T. Y. Hou and D. Huang. Potential singularity formation of 3333D axisymmetric Euler equations with degenerate viscosity coefficients. MMS, 21(1):218–268, 2023.
  39. T. Y. Hou and C. Li. Dynamic stability of the three-dimensional axisymmetric Navier–Stokes equations with swirl. CPAM, 61(5):661–697, 2008.
  40. T. Y. Hou and R. Li. Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci., 16:639–664, 2006.
  41. T. Y. Hou and R. Li. Blowup or no blowup? the interplay between theory and numerics. Physica D., 237:1937–1944, 2008.
  42. L2-based stability of blowup with log correction for semilinear heat equation. arXiv preprint: arXiv:2404.09410v1 [math.AP], 2024.
  43. T. Y. Hou and S. Zhang. Potential singularity of the axisymmetric Euler equations with Cαsuperscript𝐶𝛼{C}^{\alpha}italic_C start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT initial vorticity for a large range of α𝛼\alphaitalic_α. Part I. the 3333-dimensional case. arXiv preprint: arXiv:2212.11912 [math.AP], 2022.
  44. T. Y. Hou and S. Zhang. Potential singularity of the axisymmetric Euler equations with Cαsuperscript𝐶𝛼{C}^{\alpha}italic_C start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT initial vorticity for a large range of α𝛼\alphaitalic_α. Part II. the n𝑛nitalic_n-dimensional case. arXiv preprint: arXiv:2212.11924 [math.AP], 2022.
  45. On the exact self-similar finite-time blowup of the Hou-Luo model with smooth profiles. arXiv preprint: arXiv:2308.01528v1 [math.AP], 2023.
  46. Self-similar finite-time blowups with smooth profiles of the generalized Constantin-Lax-Majda model. arXiv preprint: arXiv:2305.05895 [math.AP], 2023.
  47. C. E. Kenig and F. Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Inventiones mathematicae, 166(3):645–675, 2006.
  48. R. M. Kerr. Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A, 5:1725–1746, 1993.
  49. A. Kiselev. Small scales and singularity formation in fluid dynamics. In Proceedings of the International Congress of Mathematicians, volume 3, 2018.
  50. A. Kiselev and O. Ladyzhenskaya. On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid. Izv. Akad. Nauk SSSR. Ser Mat., 21(5):655–690, 1957.
  51. Finite time singularity for the modified SQG patch equation. Ann. Math., 184:909–948, 2016.
  52. A. Kiselev and V. Sverak. Small scale creation for solutions of the incompressible two dimensional Euler equation. Annals of Mathematics, 180:1205–1220, 2014.
  53. Liouville theorems for the Navier–Stokes equations and applications. Acta Mathematica, 203(1):83–105, 2009.
  54. Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A (3), 38(8):3837–3843, 1988.
  55. Z. Lei and Q. Zhang. Criticality of the axially symmetric Navier–Stokes equations. Pacific Journal of Mathematics, 289(1):169–187, 2017.
  56. J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63(1):193–248, 1934.
  57. F. Lin. A new proof of the Caffarelli–Kohn–Nirenberg theorem. CPAM, 51(3):241–257, 1998.
  58. J. Liu and W. Wang. Convergence analysis of the energy and helicity preserving scheme for axisymmetric flows. SINUM, 44(6):2456–2480, 2006.
  59. G. Luo and T. Y. Hou. Potentially singular solutions of the 3333D axisymmetric Euler equations. Proceedings of the National Academy of Sciences, 111(36):12968–12973, 2014.
  60. G. Luo and T. Y. Hou. Toward the finite-time blowup of the 3333D axisymmetric Euler equations: a numerical investigation. Multiscale Modeling & Simulation, 12(4):1722–1776, 2014.
  61. A. Majda and A. Bertozzi. Vorticity and incompressible flow, volume 27. Cambridge University Press, 2002.
  62. Blow up for the critical generalized Korteweg–de Vries equation. I: Dynamics near the soliton. Acta Mathematica, 212(1):59–140, 2014.
  63. Focusing singularity of the cubic schrödinger equation. Physical Review A, 34(2):1200, 1986.
  64. F. Merle and P. Raphael. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Annals of mathematics, 161:157–222, 2005.
  65. F. Merle and H. Zaag. Stability of the blow-up profile for equations of the type ut=Δ⁢u+|u|p−1⁢usubscript𝑢𝑡Δ𝑢superscript𝑢𝑝1𝑢u_{t}={\Delta u}+|u|^{p-1}uitalic_u start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = roman_Δ italic_u + | italic_u | start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT italic_u. Duke Math. J, 86(1):143–195, 1997.
  66. F. Merle and H. Zaag. On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations. Communications in Mathematical Physics, 333(3):1529–1562, 2015.
  67. S. Palasek. A minimum critical blowup rate for the high-dimensional Navier–Stokes equations. Journal of Mathematical Fluid Mechanics, 24(4):1–28, 2022.
  68. Nature of complex singularities for the 2D Euler equation. Physica D: Nonlinear Phenomena, 219(1):40–59, 2006.
  69. G. Prodi. Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Math. Pura Appl., 4(48):173–182, 1959.
  70. B. Protas. Systematic search for extreme and singular behaviour in some fundamental models of fluid mechanics. Philosophical Transactions A, 380:20210035, 2022.
  71. G. Seregin and V. Sverak. Navier–Stokes equations with lower bounds on the pressure. Arch. Rat. Mech. Anal., 9(1):65–86, 2002.
  72. J. Serrin. On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal., 9:187–191, 1962.
  73. M. Siegel and R. E. Caflisch. Calculation of complex singular solutions to the 3D incompressible Euler equations. Physica D: Nonlinear Phenomena, 238(23):2368–2379, 2009.
  74. A. Soffer and M. I. Weinstein. Multichannel nonlinear scattering for nonintegrable equations. Comm. Math. Phys., 133:119–146, 1990.
  75. T. Tao. Finite time blowup for an averaged three-dimensional Navier–Stokes equation. J. Amer. Math. Soc., 29:601–674, 2016.
  76. T. Tao. Quantitative bounds for critically bounded solutions to the Navier–Stokes equations. arXiv:1908.04958v2 [math.AP], 2020.
  77. Asymptotic self-similar blow-up profile for three-dimensional axisymmetric Euler equations using neural networks. Phys. Rev. Lett., 130:244002, 2023.
  78. D. Wei. Regularity criterion to the axially symmetric Navier–Stokes equations. J. Math. Anal. Appl., 435(1):402–413, 2016.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com