Papers
Topics
Authors
Recent
Search
2000 character limit reached

Potential singularity formation of incompressible axisymmetric Euler equations with degenerate viscosity coefficients

Published 12 Feb 2021 in math.AP, cs.NA, math.NA, and physics.flu-dyn | (2102.06663v3)

Abstract: In this paper, we present strong numerical evidences that the incompressible axisymmetric Euler equations with degenerate viscosity coefficients and smooth initial data of finite energy develop a potential finite-time locally self-similar singularity at the origin. An important feature of this potential singularity is that the solution develops a two-scale traveling wave that travels towards the origin. The two-scale feature is characterized by the scaling property that the center of the traveling wave is located at a ring of radius $O((T-t){1/2})$ surrounding the symmetry axis while the thickness of the ring collapses at a rate $O(T-t)$. The driving mechanism for this potential singularity is due to an antisymmetric vortex dipole that generates a strong shearing layer in both the radial and axial velocity fields. Without the viscous regularization, the $3$D Euler equations develop a sharp front and some shearing instability in the far field. On the other hand, the Navier-Stokes equations with a constant viscosity coefficient regularize the two-scale solution structure and do not develop a finite-time singularity for the same initial data.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.