BraTS-Path Challenge: Assessing Heterogeneous Histopathologic Brain Tumor Sub-regions (2405.10871v1)
Abstract: Glioblastoma is the most common primary adult brain tumor, with a grim prognosis - median survival of 12-18 months following treatment, and 4 months otherwise. Glioblastoma is widely infiltrative in the cerebral hemispheres and well-defined by heterogeneous molecular and micro-environmental histopathologic profiles, which pose a major obstacle in treatment. Correctly diagnosing these tumors and assessing their heterogeneity is crucial for choosing the precise treatment and potentially enhancing patient survival rates. In the gold-standard histopathology-based approach to tumor diagnosis, detecting various morpho-pathological features of distinct histology throughout digitized tissue sections is crucial. Such "features" include the presence of cellular tumor, geographic necrosis, pseudopalisading necrosis, areas abundant in microvascular proliferation, infiltration into the cortex, wide extension in subcortical white matter, leptomeningeal infiltration, regions dense with macrophages, and the presence of perivascular or scattered lymphocytes. With these features in mind and building upon the main aim of the BraTS Cluster of Challenges https://www.synapse.org/brats2024, the goal of the BraTS-Path challenge is to provide a systematically prepared comprehensive dataset and a benchmarking environment to develop and fairly compare deep-learning models capable of identifying tumor sub-regions of distinct histologic profile. These models aim to further our understanding of the disease and assist in the diagnosis and grading of conditions in a consistent manner.
- B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., “The multimodal brain tumor image segmentation benchmark (brats),” IEEE transactions on medical imaging, vol. 34, no. 10, pp. 1993–2024, 2014.
- S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K. Farahani, and C. Davatzikos, “Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features,” Scientific data, vol. 4, no. 1, pp. 1–13, 2017.
- S. Bakas, H. Akbari, A. Sotiras, et al., “Segmentation labels for the pre-operative scans of the tcga-gbm collection.,” The cancer imaging archive, 2017.
- S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, J. Freymann, K. Farahani, and C. Davatzikos, “Segmentation labels and radiomic features for the pre-operative scans of the tcga-lgg collection,” The cancer imaging archive, vol. 286, 2017.
- S. Bakas, C. Sako, H. Akbari, M. Bilello, A. Sotiras, G. Shukla, J. D. Rudie, N. F. Santamaría, A. F. Kazerooni, S. Pati, et al., “The university of pennsylvania glioblastoma (upenn-gbm) cohort: Advanced mri, clinical, genomics, & radiomics,” Scientific data, vol. 9, no. 1, p. 453, 2022.
- U. Baid, S. Ghodasara, S. Mohan, M. Bilello, E. Calabrese, E. Colak, K. Farahani, J. Kalpathy-Cramer, F. C. Kitamura, S. Pati, et al., “The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification,” arXiv preprint arXiv:2107.02314, 2021.
- S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. Shinohara, C. Berger, S. Ha, M. Rozycki, et al., “Identifying the best machine learning algorithms for brain tumor segmentation,” Progression Assessment, and Overall Survival Prediction in the BRATS Challenge, vol. 10, 2018.
- U. Baid, S. Talbar, S. Rane, S. Gupta, M. H. Thakur, A. Moiyadi, N. Sable, M. Akolkar, and A. Mahajan, “A novel approach for fully automatic intra-tumor segmentation with 3d u-net architecture for gliomas,” Frontiers in computational neuroscience, p. 10, 2020.
- L. Maier-Hein, A. Reinke, P. Godau, M. D. Tizabi, F. Buettner, E. Christodoulou, B. Glocker, F. Isensee, J. Kleesiek, M. Kozubek, et al., “Metrics reloaded: recommendations for image analysis validation,” Nature methods, pp. 1–18, 2024.
- A. Reinke, M. D. Tizabi, M. Baumgartner, M. Eisenmann, D. Heckmann-Nötzel, A. E. Kavur, T. Rädsch, C. H. Sudre, L. Acion, M. Antonelli, et al., “Understanding metric-related pitfalls in image analysis validation,” Nature methods, pp. 1–13, 2024.
- K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, et al., “The cancer imaging archive (tcia): maintaining and operating a public information repository,” Journal of digital imaging, vol. 26, pp. 1045–1057, 2013.
- D. A. Gutman, M. Khalilia, S. Lee, M. Nalisnik, Z. Mullen, J. Beezley, D. R. Chittajallu, D. Manthey, and L. A. Cooper, “The digital slide archive: a software platform for management, integration, and analysis of histology for cancer research,” Cancer research, vol. 77, no. 21, pp. e75–e78, 2017.
- M. Bušić, Z. Rumboldt, D. Čerina, . Bušić, and K. Dolić, “Prognostic value of apparent diffusion coefficient (adc) in patients with diffuse gliomas,” Cancers, vol. 16, p. 681, Feb. 2024.
- N. Bulakbaşı and Y. Paksoy, “Advanced imaging in adult diffusely infiltrating low-grade gliomas,” Insights into Imaging, vol. 10, Dec. 2019.
- Elsevier, 2021.
- J. H. Park and H. K. Lee, “Current understanding of hypoxia in glioblastoma multiforme and its response to immunotherapy,” Cancers, vol. 14, p. 1176, Feb. 2022.
- A. Stadlbauer, T. M. Kinfe, I. Eyüpoglu, M. Zimmermann, M. Kitzwögerer, K. Podar, M. Buchfelder, G. Heinz, S. Oberndorfer, and F. Marhold, “Tissue hypoxia and alterations in microvascular architecture predict glioblastoma recurrence in humans,” Clinical Cancer Research, vol. 27, p. 1641–1649, Dec. 2020.
- S. Zhang, X. Su, G. J. Kemp, X. Yang, X. Wan, Q. Tan, Q. Yue, and Q. Gong, “Two patterns of white matter connection in multiple gliomas: Evidence from probabilistic fiber tracking,” Journal of Clinical Medicine, vol. 11, p. 3693, June 2022.
- S. D’Souza, D. R. Ormond, J. Costabile, and J. A. Thompson, “Fiber-tract localized diffusion coefficients highlight patterns of white matter disruption induced by proximity to glioma,” PLOS ONE, vol. 14, p. e0225323, Nov. 2019.
- T. Homma, T. Fukushima, S. Vaccarella, Y. Yonekawa, P. L. Di Patre, S. Franceschi, and H. Ohgaki, “Correlation among pathology, genotype, and patient outcomes in glioblastoma,” Journal of Neuropathology and Experimental Neurology, vol. 65, p. 846–854, Sept. 2006.
- S. Müller, G. Kohanbash, S. J. Liu, B. Alvarado, D. Carrera, A. Bhaduri, P. B. Watchmaker, G. Yagnik, E. Di Lullo, M. Malatesta, N. M. Amankulor, A. R. Kriegstein, D. A. Lim, M. Aghi, H. Okada, and A. Diaz, “Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment,” Genome Biology, vol. 18, Dec. 2017.
- W. C. Rutledge, J. Kong, J. Gao, D. A. Gutman, L. A. Cooper, C. Appin, Y. Park, L. Scarpace, T. Mikkelsen, M. L. Cohen, K. D. Aldape, R. E. McLendon, N. L. Lehman, C. R. Miller, M. J. Schniederjan, C. W. Brennan, J. H. Saltz, C. S. Moreno, and D. J. Brat, “Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class,” Clinical Cancer Research, vol. 19, p. 4951–4960, Sept. 2013.
- A. D’Alessio, G. Proietti, G. Sica, and B. M. Scicchitano, “Pathological and molecular features of glioblastoma and its peritumoral tissue,” Cancers, vol. 11, p. 469, Apr. 2019.
- A. Karargyris, R. Umeton, M. J. Sheller, A. Aristizabal, J. George, A. Wuest, S. Pati, H. Kassem, M. Zenk, U. Baid, et al., “Federated benchmarking of medical artificial intelligence with medperf,” Nature Machine Intelligence, vol. 5, no. 7, pp. 799–810, 2023.
- S. Pati, S. P. Thakur, İ. E. Hamamcı, U. Baid, B. Baheti, M. Bhalerao, O. Güley, S. Mouchtaris, D. Lang, S. Thermos, et al., “Gandlf: the generally nuanced deep learning framework for scalable end-to-end clinical workflows,” Communications Engineering, vol. 2, no. 1, p. 23, 2023.
- B. Baheti, S. Innani, M. Nasrallah, and S. Bakas, “Prognostic stratification of glioblastoma patients by unsupervised clustering of morphology patterns on whole slide images furthering our disease understanding,” Front. Neurosci., vol. 18, 2024.