Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical Recovery of the Diffusion Coefficient in Diffusion Equations from Terminal Measurement (2405.10708v1)

Published 17 May 2024 in math.NA and cs.NA

Abstract: In this work, we investigate a numerical procedure for recovering a space-dependent diffusion coefficient in a (sub)diffusion model from the given terminal data, and provide a rigorous numerical analysis of the procedure. By exploiting decay behavior of the observation in time, we establish a novel H{\"o}lder type stability estimate for a large terminal time $T$. This is achieved by novel decay estimates of the (fractional) time derivative of the solution. To numerically recover the diffusion coefficient, we employ the standard output least-squares formulation with an $H1(\Omega)$-seminorm penalty, and discretize the regularized problem by the Galerkin finite element method with continuous piecewise linear finite elements in space and backward Euler convolution quadrature in time. Further, we provide an error analysis of discrete approximations, and prove a convergence rate that matches the stability estimate. The derived $L2(\Omega)$ error bound depends explicitly on the noise level, regularization parameter and discretization parameter(s), which gives a useful guideline of the \textsl{a priori} choice of discretization parameters with respect to the noise level in practical implementation. The error analysis is achieved using the conditional stability argument and discrete maximum-norm resolvent estimates. Several numerical experiments are also given to illustrate and complement the theoretical analysis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Field study of dispersion in a heterogeneous aquifer: 2. spatial moments analysis. Water Resources Res., 28(12):3293–3307, 1992.
  2. Sobolev Spaces. Elsevier/Academic Press, Amsterdam, second edition, 2003.
  3. G. Alessandrini. A small collection of open problems. Rend. Istit. Mat. Univ. Trieste, 52:591–600, 2020.
  4. G. Alessandrini and S. Vessella. Error estimates in an identification problem for a parabolic equation. Boll. Un. Mat. Ital. C (6), 4(1):183–203, 1985.
  5. Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems. Begell House, New York, 1995.
  6. N. Y. Bakaev. Maximum norm resolvent estimates for elliptic finite element operators. BIT, 41(2):215–239, 2001.
  7. Maximum-norm estimates for resolvents of elliptic finite element operators. Math. Comp., 72(244):1597–1610, 2003.
  8. Diffusion coefficients estimation for elliptic partial differential equations. SIAM J. Math. Anal., 49(2):1570–1592, 2017.
  9. The Mathematical Theory of Finite Element Methods. Springer, New York, third edition, 2008.
  10. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse problems, 25(11):115002, 2009.
  11. Inverse source problem for a distributed-order time fractional diffusion equation. J. Inverse Ill-Posed Probl., 28(1):17–32, 2020.
  12. Resolvent estimates for elliptic finite element operators in one dimension. Math. Comp., 63(207):121–140, 1994.
  13. M. Crouzeix and V. Thomée. The stability in Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and Wp1subscriptsuperscript𝑊1𝑝W^{1}_{p}italic_W start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT of the L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-projection onto finite element function spaces. Math. Comp., 48(178):521–532, 1987.
  14. H. Egger and B. Hofmann. Tikhonov regularization in Hilbert scales under conditional stability assumptions. Inverse Problems, 34(11):115015, 17, 2018.
  15. Regularization of Inverse Problems. Kluwer Academic Publishers Group, Dordrecht, 1996.
  16. H. Fujita and T. Suzuki. Evolution problems. In Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, pages 789–928. North-Holland, Amsterdam, 1991.
  17. M. Giona and H. E. Roman. Fractional diffusion equation for transport phenomena in random media. Phys. A: Stat. Mech. Appl., 185(1-4):87–97, 1992.
  18. Y. Hatano and N. Hatano. Dispersive transport of ions in column experiments: An explanation of long-tailed profiles. Water Resources Res., 34(5):1027–1033, 1998.
  19. V. Isakov. Inverse parabolic problems with the final overdetermination. Comm. Pure Appl. Math., 44(2):185–209, 1991.
  20. K. Ito and B. Jin. Inverse Problems: Tikhonov Theory and Algorithms. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
  21. B. Jin. Fractional Differential Equations—an Approach via Fractional Derivatives, volume 206 of Applied Mathematical Sciences. Springer, Cham, 2021.
  22. B. Jin and Z. Zhou. Error analysis of finite element approximations of diffusion coefficient identification for elliptic and parabolic problems. SIAM J. Numer. Anal., 59(1):119–142, 2021.
  23. B. Jin and Z. Zhou. Numerical estimation of a diffusion coefficient in subdiffusion. SIAM J. Control Optim., 59(2):1466–1496, 2021.
  24. B. Jin and Z. Zhou. Numerical Treatment and Analysis of Time-Fractional Evolution Equations. Springer, Cham, 2023.
  25. B. Jin and Z. Zhou. Recovery of a space-time-dependent diffusion coefficient in subdiffusion: stability, approximation and error analysis. IMA J. Numer. Anal., 43(4):2496–2531, 2023.
  26. Y. L. Keung and J. Zou. Numerical identifications of parameters in parabolic systems. Inverse Problems, 14(1):83–100, 1998.
  27. Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006.
  28. S. Larsson and V. Thomée. Partial Differential Equations with Numerical Methods. Springer-Verlag, Berlin, 2003.
  29. B. Li and W. Sun. Maximal Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. Math. Comp., 86(305):1071–1102, 2017.
  30. Numerical inversions for space-dependent diffusion coefficient in the time fractional diffusion equation. J. Inverse Ill-Posed Probl., 20(3):339–366, 2012.
  31. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Problems, 29(6):065014, 36, 2013.
  32. J.-L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications. Vol. I. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth.
  33. C. Lubich. Discretized fractional calculus. SIAM J. Math. Anal., 17(3):704–719, 1986.
  34. R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339(1):1–77, 2000.
  35. R. R. Nigmatullin. The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi (b), 133(1):425–430, 1986.
  36. C. Palencia. Maximum norm analysis of completely discrete finite element methods for parabolic problems. SIAM J. Numer. Anal., 33(4):1654–1668, 1996.
  37. H. B. Stewart. Generation of analytic semigroups by strongly elliptic operators. Trans. Amer. Math. Soc., 199:141–162, 1974.
  38. V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin, second edition, 2006.
  39. F. Triki. Coefficient identification in parabolic equations with final data. J. Math. Pures Appl. (9), 148:342–359, 2021.
  40. L. Wang and J. Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete Contin. Dyn. Syst. Ser. B, 14(4):1641–1670, 2010.
  41. M. Yamamoto and J. Zou. Simultaneous reconstruction of the initial temperature and heat radiative coefficient. Inverse problems, 17(4):1181, 2001.
  42. Z. Zhang. An undetermined coefficient problem for a fractional diffusion equation. Inverse Problems, 32(1):015011, 21, 2016.
  43. Identification of potential in diffusion equations from terminal observation: analysis and discrete approximation. SIAM J. Numer. Anal., 60(5):2834–2865, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.