Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical Reconstruction of Diffusion and Potential Coefficients from Two Observations: Decoupled Recovery and Error Estimates (2308.03433v1)

Published 7 Aug 2023 in math.NA and cs.NA

Abstract: The focus of this paper is on the concurrent reconstruction of both the diffusion and potential coefficients present in an elliptic/parabolic equation, utilizing two internal measurements of the solutions. A decoupled algorithm is constructed to sequentially recover these two parameters. In the first step, we implement a straightforward reformulation that results in a standard problem of identifying the diffusion coefficient. This coefficient is then numerically recovered, with no requirement for knowledge of the potential, by utilizing an output least-square method coupled with finite element discretization. In the second step, the previously recovered diffusion coefficient is employed to reconstruct the potential coefficient, applying a method similar to the first step. Our approach is stimulated by a constructive conditional stability, and we provide rigorous a priori error estimates in $L2(\Omega)$ for the recovered diffusion and potential coefficients. Our approach is stimulated by a constructive conditional stability, and we provide rigorous a priori error estimates in $L2(\Omega)$ for the recovered diffusion and potential coefficients. To derive these estimates, we develop a weighted energy argument and suitable positivity conditions. These estimates offer a beneficial guide for choosing regularization parameters and discretization mesh sizes, in accordance with the noise level. Some numerical experiments are presented to demonstrate the accuracy of the numerical scheme and support our theoretical results.

Summary

We haven't generated a summary for this paper yet.