Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secrecy Performance Analysis of Multi-Functional RIS-Assisted NOMA Networks (2405.10514v2)

Published 17 May 2024 in cs.IT, eess.SP, and math.IT

Abstract: Although reconfigurable intelligent surface (RIS) can improve the secrecy communication performance of wireless users, it still faces challenges such as limited coverage and double-fading effect. To address these issues, in this paper, we utilize a novel multi-functional RIS (MF-RIS) to enhance the secrecy performance of wireless users, and investigate the physical layer secrecy problem in non-orthogonal multiple access (NOMA) networks. Specifically, we derive the secrecy outage probability (SOP) and secrecy throughput expressions of users in MF-RIS-assisted NOMA networks with external and internal eavesdroppers. The asymptotic expressions for SOP and secrecy diversity order are also analyzed under high signal-to-noise ratio (SNR) conditions. Additionally, we examine the impact of receiver hardware limitations and error transmission-induced imperfect successive interference cancellation (SIC) on the secrecy performance. Numerical results indicate that: i) under the same power budget, the secrecy performance achieved by MF-RIS significantly outperforms active RIS and simultaneously transmitting and reflecting RIS; ii) with increasing power budget, residual interference caused by imperfect SIC surpasses thermal noise as the primary factor affecting secrecy capacity; and iii) deploying additional elements at the MF-RIS brings significant secrecy enhancements for the external eavesdropping scenario, in contrast to the internal eavesdropping case.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan, “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, Sep. 2019.
  2. X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Sci. China Inf. Sci., vol. 64, no. 1, pp. 1–74, 2021.
  3. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 134–142, May 2020.
  4. Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.
  5. S. Gong, X. Lu, D. T. Hoang, D. Niyato, L. Shu, D. I. Kim, and Y.-C. Liang, “Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey,” IEEE Commun. Surveys Tutorials, vol. 22, no. 4, pp. 2283–2314, Jun 2020.
  6. Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313–3351, May 2021.
  7. Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent reflecting surface meets OFDM: Protocol design and rate maximization,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4522–4535, Jul. 2020.
  8. L. Yang, Y. Yang, M. O. Hasna, and M.-S. Alouini, “Coverage, probability of SNR gain, and DOR analysis of RIS-aided communication systems,” IEEE Wireless Commun. Lett., vol. 9, no. 8, pp. 1268–1272, Aug. 2020.
  9. J. Hu, H. Zhang, B. Di, L. Li, K. Bian, L. Song, Y. Li, Z. Han, and H. V. Poor, “Reconfigurable intelligent surface based RF sensing: Design, optimization, and implementation,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2700–2716, Nov. 2020.
  10. X. Wang, Z. Fei, J. Huang, and H. Yu, “Joint waveform and discrete phase shift design for RIS-assisted integrated sensing and communication system under Cramer-Rao bound constraint,” IEEE Trans. Veh. Technol., vol. 71, no. 1, pp. 1004–1009, Jan. 2022.
  11. G. Sun, X. Tao, N. Li, and J. Xu, “Intelligent reflecting surface and UAV assisted secrecy communication in millimeter-wave networks,” IEEE Trans. Veh. Technol., vol. 70, no. 11, pp. 11 949–11 961, Nov. 2021.
  12. Y. Pei, X. Yue, W. Yi, Y. Liu, X. Li, and Z. Ding, “Secrecy outage probability analysis for downlink RIS-NOMA networks with on-off control,” IEEE Trans. Veh. Technol., vol. 72, no. 9, pp. 11 772–11 786, Sep. 2023.
  13. W. Khalid, M. A. U. Rehman, T. Van Chien, Z. Kaleem, H. Lee, and H. Yu, “Reconfigurable intelligent surface for physical layer security in 6G-IoT: Designs, issues, and advances,” IEEE Internet Things J., vol. 11, no. 2, pp. 3599–3613, Jan. 2024.
  14. L. Dai, B. Wang, M. Wang, X. Yang, J. Tan, S. Bi, S. Xu, F. Yang, Z. Chen, M. D. Renzo, C.-B. Chae, and L. Hanzo, “Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results,” IEEE Access, vol. 8, pp. 45 913–45 923, Mar. 2020.
  15. Y. Liu, X. Mu, J. Xu, R. Schober, Y. Hao, H. V. Poor, and L. Hanzo, “STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces,” IEEE Wireless Commun., vol. 28, no. 6, pp. 102–109, Dec. 2021.
  16. J. Xu, Y. Liu, X. Mu, and O. A. Dobre, “STAR-RISs: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces,” IEEE Commun. Lett., vol. 25, no. 9, pp. 3134–3138, Sep. 2021.
  17. C. Zhang, W. Yi, Y. Liu, Z. Ding, and L. Song, “STAR-IOS aided NOMA networks: Channel model approximation and performance analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6861–6876, Sep. 2022.
  18. A. Papazafeiropoulos, Z. Abdullah, P. Kourtessis, S. Kisseleff, and I. Krikidis, “Coverage probability of STAR-RIS-assisted massive MIMO systems with correlation and phase errors,” IEEE Wireless Commun. Lett., vol. 11, no. 8, pp. 1738–1742, Aug. 2022.
  19. H. Niu, Z. Chu, F. Zhou, and Z. Zhu, “Simultaneous transmission and reflection reconfigurable intelligent surface assisted secrecy MISO networks,” IEEE Commun. Lett., vol. 25, no. 11, pp. 3498–3502, Nov. 2021.
  20. G. Hu, Z. Li, J. Si, K. Xu, Y. Cai, D. Xu, and N. Al-Dhahir, “Analysis and optimization of STAR-RIS-assisted proactive eavesdropping with statistical CSI,” IEEE Trans. Veh. Technol., vol. 72, no. 5, pp. 6850–6855, May 2023.
  21. M. Ahmed, A. Wahid, S. S. Laique, W. U. Khan, A. Ihsan, F. Xu, S. Chatzinotas, and Z. Han, “A survey on STAR-RIS: Use cases, recent advances, and future research challenges,” IEEE Internet Things J., vol. 10, no. 16, pp. 14 689–14 711, Aug. 2023.
  22. X. Pei, Y. Chen, M. Wen, H. Yu, E. Panayirci, and H. V. Poor, “Next-generation multiple access based on NOMA with power level modulation,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1072–1083, Apr. 2022.
  23. B. Zhao, C. Zhang, W. Yi, and Y. Liu, “Ergodic rate analysis of STAR-RIS aided NOMA systems,” IEEE Commun. Lett., vol. 26, no. 10, pp. 2297–2301, Apr. 2022.
  24. X. Yue, J. Xie, Y. Liu, Z. Han, R. Liu, and Z. Ding, “Simultaneously transmitting and reflecting reconfigurable intelligent surface assisted NOMA networks,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 189–204, Jan. 2023.
  25. F. Karim, S. K. Singh, K. Singh, S. Prakriya, and M. F. Flanagan, “On the performance of STAR-RIS-aided NOMA at finite blocklength,” IEEE Wireless Commun. Lett., vol. 12, no. 5, pp. 868–872, May 2023.
  26. B. Y. D. Rito and K. H. Li, “SER-effective constellation scaling and rotation in STAR-RIS-assisted uplink NOMA,” IEEE Commun. Lett., vol. 27, no. 9, pp. 2506–2510, Sep. 2023.
  27. X. Yu, K. Shen, and X. Dang, “Secure performance of STAR-RIS aided NOMA system with imperfect SIC,” IEEE Wireless Commun. Lett., vol. 12, no. 12, pp. 2023–2027, Dec. 2023.
  28. X. Li, Y. Zheng, M. Zeng, Y. Liu, and O. A. Dobre, “Enhancing secrecy performance for STAR-RIS NOMA networks,” IEEE Trans. Veh. Technol., vol. 72, no. 2, pp. 2684–2688, Feb. 2022.
  29. Y. Han, N. Li, Y. Liu, T. Zhang, and X. Tao, “Artificial noise aided secure NOMA communications in STAR-RIS networks,” IEEE Wireless Commun. Lett., vol. 11, no. 6, pp. 1191–1195, Jun. 2022.
  30. H. Han, Y. Cao, N. Deng, C. Xing, N. Zhao, Y. Li, and X. Wang, “Secure transmission for STAR-RIS aided NOMA against internal eavesdropping,” IEEE Trans. Veh. Technol., vol. 72, no. 11, pp. 15 068–15 073, Nov. 2023.
  31. Z. Zhang, J. Chen, Y. Liu, Q. Wu, B. He, and L. Yang, “On the secrecy design of STAR-RIS assisted uplink NOMA networks,” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 11 207–11 221, Dec. 2022.
  32. Y. Zhang, Z. Yang, J. Cui, P. Xu, G. Chen, Y. Wu, and M. D. Renzo, “STAR-RIS assisted secure transmission for downlink multi-carrier NOMA networks,” IEEE Trans. Inf. Forensics Security, vol. 18, pp. 5788–5803, Sep. 2023.
  33. Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, “Active RIS vs. passive RIS: Which will prevail in 6G?” IEEE Trans. Commun., vol. 71, no. 3, pp. 1707–1725, Mar. 2023.
  34. J. Xu, J. Zuo, J. T. Zhou, and Y. Liu, “Active simultaneously transmitting and reflecting (STAR)-RISs: Modeling and analysis,” IEEE Commun. Lett., vol. 27, no. 9, pp. 2466–2470, Sep. 2023.
  35. W. Wang, W. Ni, and H. Tian, “Multi-functional RIS-aided wireless communications,” IEEE Internet Things J., vol. 10, no. 23, pp. 21 133–21 134, Dec. 2023.
  36. X. Yue, J. Xie, C. Ouyang, Y. Liu, X. Shen, and Z. Ding, “Active simultaneously transmitting and reflecting surface assisted NOMA networks,” IEEE Trans. Wireless Commun., to appear in 2024.
  37. A. Zheng, W. Ni, W. Wang, H. Tian, Y. C. Eldar, and D. Niyato, “Multi-functional RIS: Signal modeling and optimization,” IEEE Trans. Veh. Technol., pp. 1–5, to appear in 2024 2023.
  38. Y. Yan, Y. Wang, W. Ni, and D. Niyato, “Joint beamforming design for multi-functional RIS-aided uplink communications,” IEEE Commun. Lett., vol. 27, no. 10, pp. 2697–2701, Oct. 2023.
  39. A. Zheng, W. Ni, W. Wang, and H. Tian, “Next-generation RIS: From single to multiple functions,” IEEE Wireless Commun. Lett., vol. 12, no. 12, pp. 1988–1992, Dec. 2023.
  40. A. Papazafeiropoulos, H. Ge, P. Kourtessis, T. Ratnarajah, S. Chatzinotas, and S. Papavassiliou, “Two-timescale design for active STAR-RIS aided massive MIMO systems,” IEEE Trans. Veh. Technol., to appear in 2024 2024.
  41. X. Li, Y. Pei, X. Yue, Y. Liu, and Z. Ding, “Secure communication of active RIS assisted NOMA networks,” IEEE Trans. Wireless Commun., to appear in 2024 2023.
  42. K. Liu, Z. Zhang, L. Dai, S. Xu, and F. Yang, “Active reconfigurable intelligent surface: Fully-connected or sub-connected?” IEEE Commun. Lett., vol. 26, no. 1, pp. 167–171, Jan. 2022.
  43. K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active RIS versus passive RIS: Which is superior with the same power budget?” IEEE Commun. Lett., vol. 26, no. 5, pp. 1150–1154, May 2022.
  44. N. Li, M. Li, Y. Liu, C. Yuan, and X. Tao, “Intelligent reflecting surface assisted NOMA with heterogeneous internal secrecy requirements,” IEEE Wireless Commun. Lett., vol. 10, no. 5, pp. 1103–1107, May 2021.
  45. I. Gradštejn and I. M. Ryžik, “Table of integrals, series, and products, 6th ed,” 2000.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com