Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secure Communication of Active RIS Assisted NOMA Networks (2403.11109v1)

Published 17 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: As a revolutionary technology, reconfigurable intelligent surface (RIS) has been deemed as an indispensable part of the 6th generation communications due to its inherent ability to regulate the wireless channels. However, passive RIS (PRIS) still suffers from some pressing issues, one of which is that the fading of the entire reflection link is proportional to the product of the distances from the base station to the PRIS and from the PRIS to the users, i.e., the productive attenuation. To tackle this problem, active RIS (ARIS) has been proposed to reconfigure the wireless propagation condition and alleviate the productive attenuation. In this paper, we investigate the physical layer security of the ARIS assisted non-orthogonal multiple access (NOMA) networks with the attendance of external and internal eavesdroppers. To be specific, the closed-form expressions of secrecy outage probability (SOP) and secrecy system throughput are derived by invoking both imperfect successive interference cancellation (ipSIC) and perfect SIC. The secrecy diversity orders of legitimate users are obtained at high signal-to-noise ratios. Numerical results are presented to verify the accuracy of the theoretical expressions and indicate that: i) The SOP of ARIS assisted NOMA networks exceeds that of PRIS-NOMA, ARIS/PRIS-assisted orthogonal multiple access (OMA); ii) Due to the balance between the thermal noise and residual interference, introducing excess reconfigurable elements at ARIS is not helpful to reduce the SOP; and iii) The secrecy throughput performance of ARIS-NOMA networks outperforms that of PRIS-NOMA and ARIS/PRIS-OMA networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Sci. China Inf. Sci., vol. 64, no. 1, pp. 1–74, 2021.
  2. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 134–142, May 2020.
  3. Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, “Non-orthogonal multiple access for 5G and beyond,” Proc. IEEE, vol. 105, no. 12, pp. 2347–2381, Dec. 2017.
  4. X. Dai, Z. Zhang, B. Bai, S. Chen, and S. Sun, “Pattern division multiple access: A new multiple access technology for 5G,” IEEE Wireless Commun., vol. 25, no. 2, pp. 54–60, Apr. 2018.
  5. X. Pei, Y. Chen, M. Wen, H. Yu, E. Panayirci, and H. V. Poor, “Next-generation multiple access based on NOMA with power level modulation,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1072–1083, Apr. 2022.
  6. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181–2195, Oct. 2017.
  7. Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6010–6023, Aug. 2016.
  8. X. Yue, Z. Qin, Y. Liu, S. Kang, and Y. Chen, “A unified framework for non-orthogonal multiple access,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5346–5359, Nov. 2018.
  9. D. Wan, M. Wen, F. Ji, Y. Liu, and Y. Huang, “Cooperative NOMA systems with partial channel state information over Nakagami- m𝑚mitalic_m fading channels,” IEEE Trans. Commun., vol. 66, no. 3, pp. 947–958, Mar. 2018.
  10. X. Liu, Y. Tao, C. Zhao, and Z. Sun, “Detect pilot spoofing attack for intelligent reflecting surface assisted systems,” IEEE Access, vol. 9, pp. 19 228–19 237, Jan. 2021.
  11. X. Luo and H. Zhu, “IRS-based TDD reciprocity breaking for pilot decontamination in massive MIMO,” IEEE Wireless Commun. Lett., vol. 10, no. 1, pp. 102–106, Jan. 2021.
  12. G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, “6G: Opening new horizons for integration of comfort, security, and intelligence,” IEEE Wireless Commun., vol. 27, no. 5, pp. 126–132, Oct. 2020.
  13. A. Chorti, A. N. Barreto, S. Köpsell, M. Zoli, M. Chafii, P. Sehier, G. Fettweis, and H. V. Poor, “Context-aware security for 6G wireless: The role of physical layer security,” IEEE Commun. Stand. Mag., vol. 6, no. 1, pp. 102–108, Mar. 2022.
  14. B. Zheng, M. Wen, C.-X. Wang, X. Wang, F. Chen, J. Tang, and F. Ji, “Secure NOMA based two-way relay networks using artificial noise and full duplex,” IEEE J. Sel. Areas Commun., vol. 36, no. 7, pp. 1426–1440, Jul. 2018.
  15. X. Chen, Z. Zhang, C. Zhong, D. W. K. Ng, and R. Jia, “Exploiting inter-user interference for secure massive non-orthogonal multiple access,” IEEE J. Sel. Areas Commun., vol. 36, no. 4, pp. 788–801, Apr. 2018.
  16. X. Yue, Y. Liu, Y. Yao, X. Li, R. Liu, and A. Nallanathan, “Secure communications in a unified non-orthogonal multiple access framework,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2163–2178, Mar. 2020.
  17. C. Zhang, F. Jia, Z. Zhang, J. Ge, and F. Gong, “Physical layer security designs for 5G NOMA systems with a stronger near-end internal eavesdropper,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13 005–13 017, Nov. 2020.
  18. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, Nov. 2020.
  19. S. Basharat, S. A. Hassan, H. Pervaiz, A. Mahmood, Z. Ding, and M. Gidlund, “Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks,” IEEE Wireless Commun., vol. 28, no. 6, pp. 184–191, Dec. 2021.
  20. Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313–3351, May 2021.
  21. X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization,” vol. 19, no. 10, pp. 6884–6898, Oct. 2020.
  22. Y. Liu, X. Mu, X. Liu, M. Di Renzo, Z. Ding, and R. Schober, “Reconfigurable intelligent surface-aided multi-user networks: Interplay between NOMA and RIS,” IEEE Trans. Wireless Commun., vol. 29, no. 2, pp. 169–176, Apr. 2022.
  23. Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent reflecting surface meets OFDM: Protocol design and rate maximization,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4522–4535, Jul. 2020.
  24. Q. Tao, J. Wang, and C. Zhong, “Performance analysis of intelligent reflecting surface aided communication systems,” IEEE Commun. Lett., vol. 24, no. 11, pp. 2464–2468, Nov. 2020.
  25. Z. Ding, R. Schober, and H. V. Poor, “On the impact of phase shifting designs on IRS-NOMA,” IEEE Wireless Commun. Lett., vol. 9, no. 10, pp. 1596–1600, Oct. 2020.
  26. Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.
  27. M. Cui, G. Zhang, and R. Zhang, “Secure wireless communication via intelligent reflecting surface,” IEEE Wireless Commun. Lett., vol. 8, no. 5, pp. 1410–1414, Oct. 2019.
  28. X. Yu, D. Xu, and R. Schober, “Enabling secure wireless communications via intelligent reflecting surfaces,” in IEEE Proc. of Global Commun. Conf. (GLOBECOM), Waikoloa, USA, Dec. 2019, pp. 1–6.
  29. B. Lyu, D. T. Hoang, S. Gong, D. Niyato, and D. I. Kim, “IRS-based wireless jamming attacks: When jammers can attack without power,” IEEE Wireless Commun. Lett., vol. 9, no. 10, pp. 1663–1667, Oct. 2020.
  30. G. C. Alexandropoulos, K. Katsanos, M. Wen, and D. B. Da Costa, “Safeguarding MIMO communications with reconfigurable metasurfaces and artificial noise,” in IEEE Proc. of International Commun. Conf. (ICC), Montreal, Canada, Jun. 2021, pp. 1–6.
  31. G. C. Alexandropoulos, K. D. Katsanos, M. Wen, and D. B. D. Costa, “Counteracting eavesdropper attacks through reconfigurable intelligent surfaces: A new threat model and secrecy rate optimization,” IEEE Open J. Commun. Soc., Early Access 2023.
  32. T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, and L. Hanzo, “Reconfigurable intelligent surface aided NOMA networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2575–2588, Nov. 2020.
  33. Y. Cheng, K. H. Li, Y. Liu, K. C. Teh, and H. V. Poor, “Downlink and uplink intelligent reflecting surface aided networks: NOMA and OMA,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3988–4000, Jun. 2021.
  34. X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Capacity and optimal resource allocation for IRS-assisted multi-user communication systems,” IEEE Trans. Commun., vol. 69, no. 6, pp. 3771–3786, Jun. 2021.
  35. X. Yue and Y. Liu, “Performance analysis of intelligent reflecting surface assisted NOMA networks,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2623–2636, Apr. 2022.
  36. Z. Liu, X. Yue, C. Zhang, Y. Liu, Y. Yao, Y. Wang, and Z. Ding, “Performance analysis of reconfigurable intelligent surface assisted two-way NOMA networks,” IEEE Trans. Veh. Technol., vol. 71, no. 12, pp. 13 091–13 104, Dec. 2022.
  37. L. Yang, J. Yang, W. Xie, M. O. Hasna, T. Tsiftsis, and M. D. Renzo, “Secrecy performance analysis of RIS-aided wireless communication systems,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12 296–12 300, Oct. 2020.
  38. C. Gong, X. Yue, X. Wang, X. Dai, R. Zou, and M. Essaaidi, “Intelligent reflecting surface aided secure communications for NOMA networks,” IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 2761–2773, Mar. 2022.
  39. Y. Pei, X. Yue, W. Yi, Y. Liu, X. Li, and Z. Ding, “Secrecy outage probability analysis for downlink RIS-NOMA networks with on-off control,” IEEE Trans. Veh. Technol., vol. 72, no. 9, pp. 11 772–11 786, Sep. 2023.
  40. Z. Zhang, L. Lv, Q. Wu, H. Deng, and J. Chen, “Robust and secure communications in intelligent reflecting surface assisted NOMA networks,” IEEE Commun. Lett., vol. 25, no. 3, pp. 739–743, Mar. 2021.
  41. H. Han, Y. Cao, M. Sheng, N. Zhao, J. Liu, and D. Niyato, “IRS-aided secure NOMA networks against internal and external eavesdropping,” IEEE Trans. Commun., vol. 70, no. 11, pp. 7536–7548, Nov. 2022.
  42. W. Wang, X. Liu, J. Tang, N. Zhao, Y. Chen, Z. Ding, and X. Wang, “Beamforming and jamming optimization for IRS-aided secure NOMA networks,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1557–1569, Mar. 2022.
  43. Z. Zhang, J. Chen, Q. Wu, Y. Liu, L. Lv, and X. Su, “Securing NOMA networks by exploiting intelligent reflecting surface,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1096–1111, Feb. 2022.
  44. Z. Tang, T. Hou, Y. Liu, J. Zhang, and L. Hanzo, “Physical layer security of intelligent reflective surface aided NOMA networks,” IEEE Trans. Veh. Technol., vol. 71, no. 7, pp. 7821–7834, Jul. 2022.
  45. Q. Zhang, J. Liu, Z. Gao, Z. Li, Z. Peng, Z. Dong, and H. Xu, “Robust beamforming design for RIS-aided NOMA secure networks with transceiver hardware impairments,” IEEE Trans. Commun., vol. 71, no. 6, pp. 3637–3649, Jun. 2023.
  46. L. Chai, L. Bai, T. Bai, J. Shi, and A. Nallanathan, “Secure RIS-aided MISO-NOMA system design in the presence of active eavesdropping,” IEEE Internet Things J., Early Access 2023.
  47. W. Wang, W. Ni, H. Tian, Z. Yang, C. Huang, and K.-K. Wong, “Safeguarding NOMA networks via reconfigurable dual-functional surface under imperfect CSI,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 950–966, Aug. 2022.
  48. E. Björnson, Ö. Özdogan, and E. G. Larsson, “Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 244–248, Feb. 2020.
  49. M. Jian, G. C. Alexandropoulos, E. Basar, C. Huang, R. Liu, Y. Liu, and C. Yuen, “Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques,” Intell. Converged Netw., vol. 3, no. 1, pp. 1–32, Mar. 2022.
  50. K. Ntontin, J. Song, and M. Di Renzo, “Multi-antenna relaying and reconfigurable intelligent surfaces: End-to-end SNR and achievable rate,” arXiv preprint arXiv:1908.07967, 2019.
  51. M. H. Khoshafa, T. M. N. Ngatched, M. H. Ahmed, and A. R. Ndjiongue, “Active reconfigurable intelligent surfaces-aided wireless communication system,” IEEE Commun. Lett., vol. 25, no. 11, pp. 3699–3703, Nov. 2021.
  52. Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, “Active RIS vs. passive RIS: Which will prevail in 6G?” arXiv preprint arXiv:2103.15154, 2021.
  53. C. You and R. Zhang, “Wireless communication aided by intelligent reflecting surface: Active or passive?” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2659–2663, Dec. 2021.
  54. K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active RIS versus passive RIS: Which is superior with the same power budget?” IEEE Commun. Lett., vol. 26, no. 5, pp. 1150–1154, May 2022.
  55. R. A. Tasci, F. Kilinc, E. Basar, and G. C. Alexandropoulos, “A new RIS architecture with a single power amplifier: Energy efficiency and error performance analysis,” IEEE Access, vol. 10, pp. 44 804–44 815, Apr. 2022.
  56. K. Liu, Z. Zhang, L. Dai, S. Xu, and F. Yang, “Active reconfigurable intelligent surface: Fully-connected or sub-connected?” IEEE Commun. Lett., vol. 26, no. 1, pp. 167–171, Jan. 2022.
  57. L. Dong, H.-M. Wang, and J. Bai, “Active reconfigurable intelligent surface aided secure transmission,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2181–2186, Feb. 2022.
  58. Z. Ding and H. V. Poor, “A simple design of IRS-NOMA transmission,” IEEE Commun. Lett., vol. 24, no. 5, pp. 1119–1123, May 2020.
  59. J. Lončar, A. Grbic, and S. Hrabar, “Ultrathin active polarization-selective metasurface at x-band frequencies,” Physical Review B, vol. 100, no. 7, p. 075131, Jul. 2019.
  60. J.-F. Bousquet, S. Magierowski, and G. G. Messier, “A 4-GHz active scatterer in 130-nm CMOS for phase sweep amplify-and-forward,” IEEE Trans. Circuits Syst., vol. 59, no. 3, pp. 529–540, Mar. 2012.
  61. K. K. Kishor and S. V. Hum, “An amplifying reconfigurable reflectarray antenna,” IEEE Trans. Antennas Propag, vol. 60, no. 1, pp. 197–205, Jan. 2012.
  62. Z. Zhang, C. Zhang, C. Jiang, F. Jia, J. Ge, and F. Gong, “Improving physical layer security for reconfigurable intelligent surface aided NOMA 6G networks,” IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 4451–4463, May 2021.
  63. E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, Aug. 2019.
  64. M. Di Renzo, K. Ntontin, J. Song, F. H. Danufane, X. Qian, F. Lazarakis, J. De Rosny, D.-T. Phan-Huy, O. Simeone, R. Zhang, M. Debbah, G. Lerosey, M. Fink, S. Tretyakov, and S. Shamai, “Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison,” IEEE Open J. Commun. Soc., vol. 1, pp. 798–807, Jun. 2020.
  65. C. Gong, X. Yue, Z. Zhang, X. Wang, and X. Dai, “Enhancing physical layer security with artificial noise in large-scale NOMAnetworks,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2349–2361, Mar. 2021.
  66. H. Liu, H. Ding, L. Xiang, J. Yuan, and L. Zheng, “Outage and BER performance analysis of cascade channel in relay networks,” vol. 34, pp. 23–30, Aug. 2014.
  67. I. Gradštejn and I. M. Ryžik, “Table of integrals, series, and products, 6th ed,” 2000.
Citations (13)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com