Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Measurement of Ionization Produced by 254 eVnr Nuclear Recoils in Germanium (2405.10405v2)

Published 16 May 2024 in nucl-ex and physics.ins-det

Abstract: Ionization produced by low-energy nuclear recoils is among the primary direct signatures of dark matter interactions. Despite the urgency of dark matter detection and the recent measurements of coherent elastic neutrino-nucleus scattering, detector response to nuclear recoils is not well characterized in the keVnr and sub-keVnr regime across a variety of materials. We have re-performed a measurement of the ionization produced by monoenergetic 254 eVnr nuclear recoils in Ge with improved digital electronics and additional systematic studies. Our results indicate an ionization yield of 64 +/- 8 eVee corresponding to a quenching factor of 25 +/- 3%, greater than the 14% predicted by the Lindhard model. This ionization enhancement could greatly improve the sensitivity of high-purity Ge detectors in dark matter detection and measurement of neutrinos via coherent scattering.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. J. Feng, The WIMP paradigm: Theme and variations, SciPost Phys. Lect. Notes , 71 (2023).
  2. R. Essig and et al., Snowmass2021 cosmic frontier: The landscape of low-threshold dark matter direct detection in the next decade.
  3. J. Xu, P. Barbeau, and Z. Hong, Detection and calibration of low-energy nuclear recoils for dark matter and neutrino scattering experiments, Annual Review of Nuclear and Particle Science 73, 95 (2023a).
  4. J. I. Collar, A. R. L. Kavner, and C. M. Lewis, Response of csi[na] to nuclear recoils: Impact on coherent elastic neutrino-nucleus scattering, Phys. Rev. D 100, 033003 (2019).
  5. N. Fourches, M. Zielińska, and G. Charles, High purity germanium: From gamma-ray detection to dark matter subterranean detectors, in Use of Gamma Radiation Techniques in Peaceful Applications, edited by B. A. Almayah (IntechOpen, Rijeka, 2019) Chap. 5.
  6. H. Bonet and et al., Large-size sub-kev sensitive germanium detectors for the conus experiment, The European Physical Journal C 81, The European Physical Journal C (2021).
  7. P. Barbeau, J. Collar, and O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics, Journal of Cosmology and Astroparticle Physics 2007 (09), 009.
  8. D. Akimov and et. al. 798, 10.1088/1742-6596/798/1/012213 (2017a).
  9. K. Scholberg, Coherent elastic neutrino-nucleus scattering, Journal of Physics: Conference Series 1468, 012126 (2020).
  10. Z. Zhang and et. al. (CDEX Collaboration), Constraints on sub-gev dark matter–electron scattering from the cdex-10 experiment, Phys. Rev. Lett. 129, 221301 (2022).
  11. X. P. Geng and et. al., Projected sensitivity of the cdex-50 experiment (2023), arXiv:2309.01843 [hep-ex] .
  12. C. Chasman, K. Jones, and R. Ristinen, Measurement of the energy loss of germanium atoms to electrons in germanium at energies below 100 kev, Phys. Rev. Lett. 15, 245 (1965).
  13. K. W. Jones and H. W. Kraner, Stopping of 1- to 1.8-kev Ge73superscriptGe73{}^{73}\mathrm{Ge}start_FLOATSUPERSCRIPT 73 end_FLOATSUPERSCRIPT roman_Ge atoms in germanium, Phys. Rev. C 4, 125 (1971).
  14. K. W. Jones and H. W. Kraner, Energy lost to ionization by 254-ev Ge73superscriptGe73{}^{73}\mathrm{Ge}start_FLOATSUPERSCRIPT 73 end_FLOATSUPERSCRIPT roman_Ge atoms stopping in ge, Phys. Rev. A 11, 1347 (1975).
  15. Y. Messous and et. al., Calibration of a ge crystal with nuclear recoils for the development of a dark matter detector, Astroparticle Physics 3, 361 (1995).
  16. A. Ahmed and et. al. (CDMS Collaboration), Results from a low-energy analysis of the cdms ii germanium data, Phys. Rev. Lett. 106, 131302 (2011).
  17. J. Collar, A. Kavner, and C. Lewis, Germanium response to sub-kev nuclear recoils: A multipronged experimental characterization, Phys. Rev. D 103, 122003 (2021).
  18. M. A. Islam, T. J. Kennett, and W. V. Prestwich, Radiative strength functions of germanium from thermal neutron capture, Phys. Rev. C 43, 1086 (1991).
  19. B. Singh and J. Chen, Adopted levels, gammas for 73ge, Nucl. Data Sheets 158 (2019), national Nuclear Data Center.
  20. Iaea nuclear data services, https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.
  21. G. Salzman, A. Goswami, and D. McDaniels, Coulomb excitation of 73ge and quasiparticle-phonon coupling theories, Nuclear Physics A 192, 312 (1972).
  22. Https://reactor.osu.edu/.
  23. Https://www.ortec-online.com/products/radiation-detectors/high-purity-germanium-hpge-radiation-detectors.
  24. Https://www.ortec-online.com/-/media/ametekortec/brochures/g/glp.pdf.
  25. (a), https://www.caen.it/products/dt5780.
  26. (b), https://www.caen.it/products/dt5533e.
  27. S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing (California Technical Publishing, 1997).
  28. G. S. F. C. A. S. Division, Xrs-2 pulse height analysis - details.
  29. G. Knoll, Radiation Detection and Measurement (4th ed.) (John Wiley, Hoboken NJ, 2010).
  30. Ortec, Introduction to amplifiers, https://www.ortec-online.com/-/media/ametekortec/other/amplifier-introduction.pdf.
  31. Ieee standard test procedures for germanium gamma-ray detectors, IEEE Std 325-1996 10.1109/IEEESTD.1997.82400 (1997).
  32. R. M. Keyser and T. R. Twomey, Optimization of pulse processing parameters for hpge gamma-ray spectroscopy systems used in extreme count rate conditions and wide count rate ranges, Journal of Radioanalytical and Nuclear Chemistry 296, 503 (2013).
  33. R. S. Raghavan and L. Pfeiffer, Observation of the high-resolution mössbauer resonance in Ge73superscriptGe73{}^{73}\mathrm{Ge}start_FLOATSUPERSCRIPT 73 end_FLOATSUPERSCRIPT roman_Ge, Phys. Rev. Lett. 32, 512 (1974).
  34. G. W. Phillips and K. W. Marlow, Automatic analysis of gamma-ray spectra from germanium detectors, Nuclear Instruments and Methods 137, 525 (1976).
  35. A. Thompson and et. al., X-ray data booklet, https://cxro.lbl.gov/x-ray-data-booklet.
  36. J. BEARDEN and A. BURR, Reevaluation of x-ray atomic energy levels, Rev. Mod. Phys. 39, 125 (1967).
  37. J. Fuggle and N. Martensson, Core-level binding energies in metals, Journal of Electron Spectroscopy and Related Phenomena 21, 275 (1980).
  38. C. Aalseth and et. al. (CoGeNT Collaboration), Results from a search for light-mass dark matter with a p𝑝pitalic_p-type point contact germanium detector, Phys. Rev. Lett. 106, 10.1103/PhysRevLett.106.131301 (2011).
  39. K. Ke-Jun and et. al., Cdex-1 1 kg point-contact germanium detector for low mass dark matter searches, Chinese Physics C 37, 10.1088/1674-1137/37/12/126002 (2013).
  40. F. Izraelevitch and et. al., Journal of Instrumentation 12 (06), P06014.
  41. D. Z. Freedman, Coherent effects of a weak neutral current, Phys. Rev. D 9, 1389 (1974).
  42. N. S. Bowden, Reactor monitoring and safeguards using antineutrino detectors, Journal of Physics: Conference Series 136, 022008 (2008).
  43. M. Andriamirado, A. B. Balantekin, and et. al. (PROSPECT Collaboration), Improved short-baseline neutrino oscillation search and energy spectrum measurement with the prospect experiment at hfir, Phys. Rev. D 103, 032001 (2021).
  44. L. Wen, J. Cao, and Y. Wang, Reactor neutrino experiments: Present and future, Annual Review of Nuclear and Particle Science 67, 183 (2017).
  45. D. Akimov and et. al., Science 357, 1123 (2017b).
  46. A. Drukier and L. Stodolsky, Principles and applications of a neutral-current detector for neutrino physics and astronomy, Phys. Rev. D 30, 2295 (1984).
  47. L. Pfeiffer, Measurement of large e⁢2𝑒2e2italic_e 2 dispersive interference in the high-resolution Ge73superscriptGe73{}^{73}\mathrm{Ge}start_FLOATSUPERSCRIPT 73 end_FLOATSUPERSCRIPT roman_Ge mössbauer transition at natural linewidth, Phys. Rev. Lett. 38, 862 (1977).
  48. G. M. Temmer and N. P. Heydenburg, Coulomb excitation of medium-weight nuclei, Phys. Rev. 104, 967 (1956).
  49. R. E. Holland and F. J. Lynch, Lifetimes of excited states of nuclei with odd mass, Phys. Rev. 121, 1464 (1961).
  50. J. Goodman and J. Weare, Ensemble samplers with affine invariance, Communications in Applied Mathematics and Computational Science 5, 10.2140/camcos.2010.5.65 (2010).
  51. Https://emcee.readthedocs.io/en/stable/.
  52. R. Weishaupt and D. Rabenstein, Zeitschrift für Physik A Hadrons and nuclei 251, 10.1007/BF01380454 (1972).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.