Measurement of Ionization Produced by 254 eVnr Nuclear Recoils in Germanium (2405.10405v2)
Abstract: Ionization produced by low-energy nuclear recoils is among the primary direct signatures of dark matter interactions. Despite the urgency of dark matter detection and the recent measurements of coherent elastic neutrino-nucleus scattering, detector response to nuclear recoils is not well characterized in the keVnr and sub-keVnr regime across a variety of materials. We have re-performed a measurement of the ionization produced by monoenergetic 254 eVnr nuclear recoils in Ge with improved digital electronics and additional systematic studies. Our results indicate an ionization yield of 64 +/- 8 eVee corresponding to a quenching factor of 25 +/- 3%, greater than the 14% predicted by the Lindhard model. This ionization enhancement could greatly improve the sensitivity of high-purity Ge detectors in dark matter detection and measurement of neutrinos via coherent scattering.
- J. Feng, The WIMP paradigm: Theme and variations, SciPost Phys. Lect. Notes , 71 (2023).
- R. Essig and et al., Snowmass2021 cosmic frontier: The landscape of low-threshold dark matter direct detection in the next decade.
- J. Xu, P. Barbeau, and Z. Hong, Detection and calibration of low-energy nuclear recoils for dark matter and neutrino scattering experiments, Annual Review of Nuclear and Particle Science 73, 95 (2023a).
- J. I. Collar, A. R. L. Kavner, and C. M. Lewis, Response of csi[na] to nuclear recoils: Impact on coherent elastic neutrino-nucleus scattering, Phys. Rev. D 100, 033003 (2019).
- N. Fourches, M. Zielińska, and G. Charles, High purity germanium: From gamma-ray detection to dark matter subterranean detectors, in Use of Gamma Radiation Techniques in Peaceful Applications, edited by B. A. Almayah (IntechOpen, Rijeka, 2019) Chap. 5.
- H. Bonet and et al., Large-size sub-kev sensitive germanium detectors for the conus experiment, The European Physical Journal C 81, The European Physical Journal C (2021).
- P. Barbeau, J. Collar, and O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics, Journal of Cosmology and Astroparticle Physics 2007 (09), 009.
- D. Akimov and et. al. 798, 10.1088/1742-6596/798/1/012213 (2017a).
- K. Scholberg, Coherent elastic neutrino-nucleus scattering, Journal of Physics: Conference Series 1468, 012126 (2020).
- Z. Zhang and et. al. (CDEX Collaboration), Constraints on sub-gev dark matter–electron scattering from the cdex-10 experiment, Phys. Rev. Lett. 129, 221301 (2022).
- X. P. Geng and et. al., Projected sensitivity of the cdex-50 experiment (2023), arXiv:2309.01843 [hep-ex] .
- C. Chasman, K. Jones, and R. Ristinen, Measurement of the energy loss of germanium atoms to electrons in germanium at energies below 100 kev, Phys. Rev. Lett. 15, 245 (1965).
- K. W. Jones and H. W. Kraner, Stopping of 1- to 1.8-kev Ge73superscriptGe73{}^{73}\mathrm{Ge}start_FLOATSUPERSCRIPT 73 end_FLOATSUPERSCRIPT roman_Ge atoms in germanium, Phys. Rev. C 4, 125 (1971).
- K. W. Jones and H. W. Kraner, Energy lost to ionization by 254-ev Ge73superscriptGe73{}^{73}\mathrm{Ge}start_FLOATSUPERSCRIPT 73 end_FLOATSUPERSCRIPT roman_Ge atoms stopping in ge, Phys. Rev. A 11, 1347 (1975).
- Y. Messous and et. al., Calibration of a ge crystal with nuclear recoils for the development of a dark matter detector, Astroparticle Physics 3, 361 (1995).
- A. Ahmed and et. al. (CDMS Collaboration), Results from a low-energy analysis of the cdms ii germanium data, Phys. Rev. Lett. 106, 131302 (2011).
- J. Collar, A. Kavner, and C. Lewis, Germanium response to sub-kev nuclear recoils: A multipronged experimental characterization, Phys. Rev. D 103, 122003 (2021).
- M. A. Islam, T. J. Kennett, and W. V. Prestwich, Radiative strength functions of germanium from thermal neutron capture, Phys. Rev. C 43, 1086 (1991).
- B. Singh and J. Chen, Adopted levels, gammas for 73ge, Nucl. Data Sheets 158 (2019), national Nuclear Data Center.
- Iaea nuclear data services, https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.
- G. Salzman, A. Goswami, and D. McDaniels, Coulomb excitation of 73ge and quasiparticle-phonon coupling theories, Nuclear Physics A 192, 312 (1972).
- Https://reactor.osu.edu/.
- Https://www.ortec-online.com/products/radiation-detectors/high-purity-germanium-hpge-radiation-detectors.
- Https://www.ortec-online.com/-/media/ametekortec/brochures/g/glp.pdf.
- (a), https://www.caen.it/products/dt5780.
- (b), https://www.caen.it/products/dt5533e.
- S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing (California Technical Publishing, 1997).
- G. S. F. C. A. S. Division, Xrs-2 pulse height analysis - details.
- G. Knoll, Radiation Detection and Measurement (4th ed.) (John Wiley, Hoboken NJ, 2010).
- Ortec, Introduction to amplifiers, https://www.ortec-online.com/-/media/ametekortec/other/amplifier-introduction.pdf.
- Ieee standard test procedures for germanium gamma-ray detectors, IEEE Std 325-1996 10.1109/IEEESTD.1997.82400 (1997).
- R. M. Keyser and T. R. Twomey, Optimization of pulse processing parameters for hpge gamma-ray spectroscopy systems used in extreme count rate conditions and wide count rate ranges, Journal of Radioanalytical and Nuclear Chemistry 296, 503 (2013).
- R. S. Raghavan and L. Pfeiffer, Observation of the high-resolution mössbauer resonance in Ge73superscriptGe73{}^{73}\mathrm{Ge}start_FLOATSUPERSCRIPT 73 end_FLOATSUPERSCRIPT roman_Ge, Phys. Rev. Lett. 32, 512 (1974).
- G. W. Phillips and K. W. Marlow, Automatic analysis of gamma-ray spectra from germanium detectors, Nuclear Instruments and Methods 137, 525 (1976).
- A. Thompson and et. al., X-ray data booklet, https://cxro.lbl.gov/x-ray-data-booklet.
- J. BEARDEN and A. BURR, Reevaluation of x-ray atomic energy levels, Rev. Mod. Phys. 39, 125 (1967).
- J. Fuggle and N. Martensson, Core-level binding energies in metals, Journal of Electron Spectroscopy and Related Phenomena 21, 275 (1980).
- C. Aalseth and et. al. (CoGeNT Collaboration), Results from a search for light-mass dark matter with a p𝑝pitalic_p-type point contact germanium detector, Phys. Rev. Lett. 106, 10.1103/PhysRevLett.106.131301 (2011).
- K. Ke-Jun and et. al., Cdex-1 1 kg point-contact germanium detector for low mass dark matter searches, Chinese Physics C 37, 10.1088/1674-1137/37/12/126002 (2013).
- F. Izraelevitch and et. al., Journal of Instrumentation 12 (06), P06014.
- D. Z. Freedman, Coherent effects of a weak neutral current, Phys. Rev. D 9, 1389 (1974).
- N. S. Bowden, Reactor monitoring and safeguards using antineutrino detectors, Journal of Physics: Conference Series 136, 022008 (2008).
- M. Andriamirado, A. B. Balantekin, and et. al. (PROSPECT Collaboration), Improved short-baseline neutrino oscillation search and energy spectrum measurement with the prospect experiment at hfir, Phys. Rev. D 103, 032001 (2021).
- L. Wen, J. Cao, and Y. Wang, Reactor neutrino experiments: Present and future, Annual Review of Nuclear and Particle Science 67, 183 (2017).
- D. Akimov and et. al., Science 357, 1123 (2017b).
- A. Drukier and L. Stodolsky, Principles and applications of a neutral-current detector for neutrino physics and astronomy, Phys. Rev. D 30, 2295 (1984).
- L. Pfeiffer, Measurement of large e2𝑒2e2italic_e 2 dispersive interference in the high-resolution Ge73superscriptGe73{}^{73}\mathrm{Ge}start_FLOATSUPERSCRIPT 73 end_FLOATSUPERSCRIPT roman_Ge mössbauer transition at natural linewidth, Phys. Rev. Lett. 38, 862 (1977).
- G. M. Temmer and N. P. Heydenburg, Coulomb excitation of medium-weight nuclei, Phys. Rev. 104, 967 (1956).
- R. E. Holland and F. J. Lynch, Lifetimes of excited states of nuclei with odd mass, Phys. Rev. 121, 1464 (1961).
- J. Goodman and J. Weare, Ensemble samplers with affine invariance, Communications in Applied Mathematics and Computational Science 5, 10.2140/camcos.2010.5.65 (2010).
- Https://emcee.readthedocs.io/en/stable/.
- R. Weishaupt and D. Rabenstein, Zeitschrift für Physik A Hadrons and nuclei 251, 10.1007/BF01380454 (1972).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.