Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of a Multi-Molecule Molecular Communication Testbed Based on Spectral Sensing (2405.10280v1)

Published 16 May 2024 in cs.ET

Abstract: This work presents a novel flow-based molecular communication (MC) testbed using spectral sensing and ink concentration estimation to enable real-time multi-molecule (MUMO) transmission. MUMO communication opens up crucial opportunities for increased throughput as well as implementing more complex coding, modulation, and resource allocation strategies for MC testbeds. A concentration estimator using non-invasive spectral sensing at the receiver is proposed based on a simple absorption model. We conduct in-depth channel impulse response (CIR) measurements and a preliminary communication performance evaluation. Additionally, a simple analytical model is used to check the consistency of the CIRs. The results indicate that by utilizing MUMO transmission, on-off-keying, and a simple difference detector, the testbed can achieve up to 3 bits per second for near-error-free communication, which is on par with comparable testbeds that utilize more sophisticated coding or detection methods. Our platform lays the ground for implementing MUMO communication and evaluating various physical layer and networking techniques based on multiple molecule types in future MC testbeds in real time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. S. Lotter, L. Brand, V. Jamali, M. Schäfer, H. M. Loos, H. Unterweger, et al., “Experimental Research in Synthetic Molecular Communications –Part II,” IEEE Nanotechnol. Mag., vol. 17, no. 3, pp. 54–65, 2023.
  2. N. Farsad, W. Guo, and A. W. Eckford, “Tabletop Molecular Communication: Text Messages through Chemical Signals,” PLoS ONE, vol. 8, Dec. 2013.
  3. P. Hofmann, J. T. Gómez, F. Dressler, and F. H. Fitzek, “Testbed-based Receiver Optimization for SISO Molecular Communication Channels,” in Proceedings of the 2022 BalkanCom, pp. 120–125, Aug. 2022.
  4. B.-H. Koo, C. Lee, H. B. Yilmaz, N. Farsad, A. Eckford, and C.-B. Chae, “Molecular MIMO: From Theory to Prototype,” IEEE JSAC, vol. 34, pp. 600–614, Mar. 2016.
  5. P. Hofmann, J. Cabrera Guerrero, R. Bassoli, and F. Fitzek, “Analog Network Coding in Molecular Communications: A Practical Implementation,” in Proceedings of the 2023 IEEE GLOBECOM, pp. 571–576, IEEE, Dec. 2023.
  6. N. Farsad, D. Pan, and A. Goldsmith, “A Novel Experimental Platform for In-Vessel Multi-Chemical Molecular Communications,” in Proceedings of the 2017 IEEE GLOBECOM, pp. 1–6, Dec. 2017.
  7. L. Brand, M. Scherer, M. Schäfer, A. Burkovski, H. Sticht, K. Castiglione, and R. Schober, “Closed Loop Molecular Communication Testbed: Setup, Interference Analysis, and Experimental Results,” in Proceedings of the IEEE International Conference on Communications (ICC), June 2024. to be published.
  8. W. Wicke, H. Unterweger, J. Kirchner, L. Brand, A. Ahmadzadeh, D. Ahmed, et al., “Experimental System for Molecular Communication in Pipe Flow With Magnetic Nanoparticles,” IEEE Trans. Mol. Biol. Multi-Scale Commun., vol. 8, pp. 56–71, June 2022.
  9. M. Bartunik, G. Fischer, and J. Kirchner, “The Development of a Biocompatible Testbed for Molecular Communication With Magnetic Nanoparticles,” IEEE Trans. Mol. Biol. Multi-Scale Commun., vol. 9, pp. 179–190, June 2023.
  10. V. Walter, D. Bi, A. Salehi-Reyhani, and Y. Deng, “Real-time signal processing via chemical reactions for a microfluidic molecular communication system,” Nat. Commun., vol. 14, p. 7188, Nov. 2023.
  11. I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy, “The Internet of Bio-Nano Things,” IEEE Commun. Mag., vol. 53, pp. 32–40, Mar. 2015.
  12. J. Wang, S. Öğüt, H. Al Hassanieh, and B. Krishnaswamy, “Towards Practical and Scalable Molecular Networks,” in Proceedings of the 2023 ACM SIGCOMM, pp. 62–76, Sept. 2023.
  13. W. Pan, X. Chen, X. Yang, N. Zhao, L. Meng, and F. H. Shah, “A Molecular Communication Platform Based on Body Area Nanonetwork,” Nanomaterials, vol. 12, p. 722, Feb. 2022.
  14. D. F. Swinehart, “The Beer-Lambert Law,” Journal of Chemical Education, vol. 39, p. 333, July 1962.
  15. P. R. Griffiths and J. A. De Haseth, “Quantitative Analysis,” in Fourier Transform Infrared Spectrometry, New York, U.S.: Wiley, 1. ed., 2007.
  16. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. New Jersey, U.S.: Prentice-Hall, Inc., 1993.
  17. V. Jamali, A. Ahmadzadeh, W. Wicke, A. Noel, and R. Schober, “Channel Modeling for Diffusive Molecular Communication—A Tutorial Review,” Proc. IEEE, vol. 107, pp. 1256–1301, July 2019.
  18. F. M. White, Fluid Mechanics. New York, U.S.: McGraw-Hill, 2016.
  19. M. Holz, S. R. Heil, and A. Sacco, “Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements,” Royal Society of Chemistry PCCP Journal, vol. 2, no. 20, pp. 4740–4742, 2000.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com