Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Received Signal and Channel Parameter Estimation in Molecular Communications (2311.14621v1)

Published 24 Nov 2023 in cs.NI and eess.SP

Abstract: Molecular communication (MC) is a paradigm that employs molecules as information transmitters, hence, requiring unconventional transceivers and detection techniques for the Internet of Bio-Nano Things (IoBNT). In this study, we provide a novel MC model that incorporates a spherical transmitter and receiver with partial absorption. This model offers a more realistic representation than receiver architectures in literature, e.g. passive or entirely absorbing configurations. An optimization-based technique utilizing particle swarm optimization (PSO) is employed to accurately estimate the cumulative number of molecules received. This technique yields nearly constant correction parameters and demonstrates a significant improvement of 5 times in terms of root mean square error (RMSE). The estimated channel model provides an approximate analytical impulse response; hence, it is used for estimating channel parameters such as distance, diffusion coefficient, or a combination of both. We apply iterative maximum likelihood estimation (MLE) for the parameter estimation, which gives consistent errors compared to the estimated Cramer-Rao Lower Bound (CLRB).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. A. Das, B. Runwal, O. T. Baydas, O. Cetinkaya, and O. B. Akan, “Received signal modeling and ber analysis for molecular si- so communications,” in  The Ninth Annual ACM International Conference on Nanoscale Computing and Communication (NANOCOM ’22), 2022.
  2. O. B. Akan, E. Dinc, M. Kuscu, O. Cetinkaya, and B. A. Bilgin, “Internet of everything (ioe) - from molecules to the universe,” IEEE Communications Magazine, vol. 61, no. 10, pp. 122–128, 2023.
  3. M. Civas, M. Kuscu, O. Cetinkaya, B. E. Ortlek, and O. B. Akan, “Graphene and related materials for the internet of bio-nano things,” 2023.
  4. I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy, “The internet of bio-nano things,” IEEE Communications Magazine, vol. 53, no. 3, pp. 32–40, 2015.
  5. M. Civas and O. B. Akan, “Molecular communication transmitter architectures for the internet of bio-nano things,” in 2022 International Balkan Conference on Communications and Networking (BalkanCom), 2022, pp. 132–136.
  6. B. C. Akdeniz, N. A. Turgut, H. B. Yilmaz, C.-B. Chae, T. Tugcu, and A. E. Pusane, “Molecular signal modeling of a partially counting absorbing spherical receiver,” IEEE Trans. Commun., vol. 66, no. 12, pp. 6237–6246, 2018.
  7. H. B. Yilmaz, C. Lee, Y. J. Cho, and C.-B. Chae, “A machine learning approach to model the received sig- nal in molecular communications,” in IEEE BlackSeaCom, 2017, pp. 1–5.
  8. X. Qian and M. Di Renzo, “Receiver design in molecular communications: An approach based on artificial neural networks,” in IEEE ISWCS, 2018, pp. 1–5.
  9. O. T. Baydas, O. Cetinkaya, and O. B. Akan, “Estimation and detection for molecular mimo communications in the internet of bio-nano things,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 9, no. 1, pp. 106–110, 2023.
  10. M. Turan, B. C. Akdeniz, M. S. Kuran, H. B. Yilmaz, I. Demirkol, A. E. Pusane, and T. Tugcu, “Transmitter localization in vessel-like diffusive channels using ring-shaped molecular receivers,” IEEE Communications Letters, vol. 22, no. 12, pp. 2511–2514, 2018.
  11. H. E. Baidoo-Williams, M. M. U. Rahman, and Q. H. Abbasi, “Channel impulse response-based source localization in a diffusion-based molecular communication system,” Internet Technology Letters, vol. 3, no. 2, p. e143, 2020.
  12. F. Vakilipoor and M. Magarini, “Localization of a nano-transmitter in a diffusive mc system with multiple fully-absorbing receivers,” in 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), 2022, pp. 745–750.
  13. Y. Chen, Y. Li, L. Lin, and H. Yan, “Parameter estimation of diffusive molecular communication with drift,” IEEE Access, vol. 8, pp. 142 704–142 713, 2020.
  14. A. Kumar and S. Kumar, “Joint localization and channel estimation in flow-assisted molecular communication systems,” Nano Communication Networks, vol. 35, 2023.
  15. N. Farsad and A. Goldsmith, “Neural network detection of data sequences in communication systems,” IEEE Trans. on Signal Process., vol. 66, no. 21, pp. 5663–5678, 2018.
  16. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948 vol.4.
  17. A. Noel, K. C. Cheung, and R. Schober, “Joint channel parameter estimation via diffusive molecular communication,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 1, no. 1, pp. 4–17, 2015.
Citations (2)

Summary

We haven't generated a summary for this paper yet.