Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of kinetic Langevin samplers for non-convex potentials (2405.09992v1)

Published 16 May 2024 in math.PR, cs.NA, and math.NA

Abstract: We study three kinetic Langevin samplers including the Euler discretization, the BU and the UBU splitting scheme. We provide contraction results in $L1$-Wasserstein distance for non-convex potentials. These results are based on a carefully tailored distance function and an appropriate coupling construction. Additionally, the error in the $L1$-Wasserstein distance between the true target measure and the invariant measure of the discretization scheme is bounded. To get an $\varepsilon$-accuracy in $L1$-Wasserstein distance, we show complexity guarantees of order $\mathcal{O}(\sqrt{d}/\varepsilon)$ for the Euler scheme and $\mathcal{O}(d{1/4}/\sqrt{\varepsilon})$ for the UBU scheme under appropriate regularity assumptions on the target measure. The results are applicable to interacting particle systems and provide bounds for sampling probability measures of mean-field type.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. {barticle}[author] \bauthor\bsnmBaudoin, \bfnmFabrice\binitsF. (\byear2016). \btitleWasserstein contraction properties for hypoelliptic diffusions. \bjournalarXiv preprint arXiv:1602.04177. \endbibitem
  2. {barticle}[author] \bauthor\bsnmBaudoin, \bfnmFabrice\binitsF. (\byear2017). \btitleBakry-Émery meet Villani. \bjournalJ. Funct. Anal. \bvolume273 \bpages2275–2291. \bdoi10.1016/j.jfa.2017.06.021 \bmrnumber3677826 \endbibitem
  3. {barticle}[author] \bauthor\bsnmBolley, \bfnmFrançois\binitsF., \bauthor\bsnmGuillin, \bfnmArnaud\binitsA. and \bauthor\bsnmMalrieu, \bfnmFlorent\binitsF. (\byear2010). \btitleTrend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. \bjournalM2AN Math. Model. Numer. Anal. \bvolume44 \bpages867–884. \bdoi10.1051/m2an/2010045 \bmrnumber2731396 \endbibitem
  4. {barticle}[author] \bauthor\bsnmBou-Rabee, \bfnmNawaf\binitsN., \bauthor\bsnmEberle, \bfnmAndreas\binitsA. and \bauthor\bsnmZimmer, \bfnmRaphael\binitsR. (\byear2020). \btitleCoupling and convergence for Hamiltonian Monte Carlo. \bjournalAnn. Appl. Probab. \bvolume30 \bpages1209–1250. \bdoi10.1214/19-AAP1528 \bmrnumber4133372 \endbibitem
  5. {barticle}[author] \bauthor\bsnmBou-Rabee, \bfnmNawaf\binitsN. and \bauthor\bsnmKleppe, \bfnmTore Selland\binitsT. S. (\byear2023). \btitleRandomized Runge-Kutta-Nystr\\\backslash\”om. \bjournalarXiv preprint arXiv:2310.07399. \endbibitem
  6. {barticle}[author] \bauthor\bsnmBou-Rabee, \bfnmNawaf\binitsN. and \bauthor\bsnmMarsden, \bfnmMilo\binitsM. (\byear2022). \btitleUnadjusted Hamiltonian MCMC with stratified Monte Carlo time integration. \bjournalarXiv preprint arXiv:2211.11003. \endbibitem
  7. {barticle}[author] \bauthor\bsnmBou-Rabee, \bfnmNawaf\binitsN. and \bauthor\bsnmOberdörster, \bfnmStefan\binitsS. (\byear2023). \btitleMixing of Metropolis-Adjusted Markov Chains via Couplings: The High Acceptance Regime. \bjournalarXiv preprint arXiv:2308.04634. \endbibitem
  8. {barticle}[author] \bauthor\bsnmBou-Rabee, \bfnmNawaf\binitsN. and \bauthor\bsnmSchuh, \bfnmKatharina\binitsK. (\byear2023). \btitleConvergence of unadjusted Hamiltonian Monte Carlo for mean-field models. \bjournalElectron. J. Probab. \bvolume28 \bpagesPaper No. 91, 40. \bdoi10.1214/23-ejp970 \bmrnumber4610714 \endbibitem
  9. {barticle}[author] \bauthor\bsnmBou-Rabee, \bfnmNawaf\binitsN. and \bauthor\bsnmSchuh, \bfnmKatharina\binitsK. (\byear2023). \btitleNonlinear Hamiltonian Monte Carlo & its Particle Approximation. \bjournalarXiv preprint arXiv:2308.11491. \endbibitem
  10. {barticle}[author] \bauthor\bsnmBrigati, \bfnmGiovanni\binitsG. and \bauthor\bsnmStoltz, \bfnmGabriel\binitsG. (\byear2023). \btitleHow to construct decay rates for kinetic Fokker–Planck equations? \bjournalarXiv preprint arXiv:2302.14506. \endbibitem
  11. {barticle}[author] \bauthor\bsnmBrünger, \bfnmAxel\binitsA., \bauthor\bsnmBrooks III, \bfnmCharles L\binitsC. L. and \bauthor\bsnmKarplus, \bfnmMartin\binitsM. (\byear1984). \btitleStochastic boundary conditions for molecular dynamics simulations of ST2 water. \bjournalChemical physics letters \bvolume105 \bpages495–500. \endbibitem
  12. {barticle}[author] \bauthor\bsnmBussi, \bfnmGiovanni\binitsG. and \bauthor\bsnmParrinello, \bfnmMichele\binitsM. (\byear2007). \btitleAccurate sampling using Langevin dynamics. \bjournalPhysical Review E \bvolume75 \bpages056707. \endbibitem
  13. {barticle}[author] \bauthor\bsnmChak, \bfnmMartin\binitsM. and \bauthor\bsnmMonmarché, \bfnmPierre\binitsP. (\byear2023). \btitleReflection coupling for unadjusted generalized Hamiltonian Monte Carlo in the nonconvex stochastic gradient case. \bjournalarXiv preprint arXiv:2310.18774. \endbibitem
  14. {barticle}[author] \bauthor\bsnmChen, \bfnmYuansi\binitsY. and \bauthor\bsnmGatmiry, \bfnmKhashayar\binitsK. (\byear2023). \btitleWhen does Metropolized Hamiltonian Monte Carlo provably outperform Metropolis-adjusted Langevin algorithm? \bjournalarXiv preprint arXiv:2304.04724. \endbibitem
  15. {barticle}[author] \bauthor\bsnmDalalyan, \bfnmArnak S.\binitsA. S. (\byear2017). \btitleTheoretical guarantees for approximate sampling from smooth and log-concave densities. \bjournalJ. R. Stat. Soc. Ser. B. Stat. Methodol. \bvolume79 \bpages651–676. \bdoi10.1111/rssb.12183 \bmrnumber3641401 \endbibitem
  16. {barticle}[author] \bauthor\bsnmDalalyan, \bfnmArnak S.\binitsA. S. and \bauthor\bsnmRiou-Durand, \bfnmLionel\binitsL. (\byear2020). \btitleOn sampling from a log-concave density using kinetic Langevin diffusions. \bjournalBernoulli \bvolume26 \bpages1956–1988. \bdoi10.3150/19-BEJ1178 \bmrnumber4091098 \endbibitem
  17. {barticle}[author] \bauthor\bsnmDolbeault, \bfnmJean\binitsJ., \bauthor\bsnmMouhot, \bfnmClément\binitsC. and \bauthor\bsnmSchmeiser, \bfnmChristian\binitsC. (\byear2009). \btitleHypocoercivity for kinetic equations with linear relaxation terms. \bjournalC. R. Math. Acad. Sci. Paris \bvolume347 \bpages511–516. \bdoi10.1016/j.crma.2009.02.025 \bmrnumber2576899 \endbibitem
  18. {barticle}[author] \bauthor\bsnmDolbeault, \bfnmJean\binitsJ., \bauthor\bsnmMouhot, \bfnmClément\binitsC. and \bauthor\bsnmSchmeiser, \bfnmChristian\binitsC. (\byear2015). \btitleHypocoercivity for linear kinetic equations conserving mass. \bjournalTrans. Amer. Math. Soc. \bvolume367 \bpages3807–3828. \bdoi10.1090/S0002-9947-2015-06012-7 \bmrnumber3324910 \endbibitem
  19. {barticle}[author] \bauthor\bsnmDurmus, \bfnmAlain\binitsA. and \bauthor\bsnmMoulines, \bfnmÉric\binitsE. (\byear2017). \btitleNonasymptotic convergence analysis for the unadjusted Langevin algorithm. \bjournalAnn. Appl. Probab. \bvolume27 \bpages1551–1587. \bdoi10.1214/16-AAP1238 \bmrnumber3678479 \endbibitem
  20. {barticle}[author] \bauthor\bsnmEberle, \bfnmAndreas\binitsA., \bauthor\bsnmGuillin, \bfnmArnaud\binitsA. and \bauthor\bsnmZimmer, \bfnmRaphael\binitsR. (\byear2019). \btitleCouplings and quantitative contraction rates for Langevin dynamics. \bjournalAnn. Probab. \bvolume47 \bpages1982–2010. \bdoi10.1214/18-AOP1299 \bmrnumber3980913 \endbibitem
  21. {barticle}[author] \bauthor\bsnmFoster, \bfnmJames\binitsJ., \bauthor\bsnmLyons, \bfnmTerry\binitsT. and \bauthor\bsnmOberhauser, \bfnmHarald\binitsH. (\byear2021). \btitleThe shifted ODE method for underdamped Langevin MCMC. \bjournalarXiv preprint arXiv:2101.03446. \endbibitem
  22. {barticle}[author] \bauthor\bsnmFoster, \bfnmJames M\binitsJ. M., \bauthor\bparticledos \bsnmReis, \bfnmGonçalo\binitsG. and \bauthor\bsnmStrange, \bfnmCalum\binitsC. (\byear2024). \btitleHigh Order Splitting Methods for SDEs Satisfying a Commutativity Condition. \bjournalSIAM Journal on Numerical Analysis \bvolume62 \bpages500–532. \endbibitem
  23. {barticle}[author] \bauthor\bsnmGiles, \bfnmMichael B.\binitsM. B. (\byear2015). \btitleMultilevel Monte Carlo methods. \bjournalActa Numer. \bvolume24 \bpages259–328. \bdoi10.1017/S096249291500001X \bmrnumber3349310 \endbibitem
  24. {barticle}[author] \bauthor\bsnmJasra, \bfnmA.\binitsA., \bauthor\bsnmHolmes, \bfnmC. C.\binitsC. C. and \bauthor\bsnmStephens, \bfnmD. A.\binitsD. A. (\byear2005). \btitleMarkov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. \bjournalStatist. Sci. \bvolume20 \bpages50–67. \bdoi10.1214/088342305000000016 \bmrnumber2182987 \endbibitem
  25. {barticle}[author] \bauthor\bsnmLeimkuhler, \bfnmBenedict\binitsB. and \bauthor\bsnmMatthews, \bfnmCharles\binitsC. (\byear2013). \btitleRational construction of stochastic numerical methods for molecular sampling. \bjournalAppl. Math. Res. Express. AMRX \bvolume1 \bpages34–56. \bdoi10.1093/amrx/abs010 \bmrnumber3040887 \endbibitem
  26. {barticle}[author] \bauthor\bsnmLeimkuhler, \bfnmBenedict\binitsB. and \bauthor\bsnmMatthews, \bfnmCharles\binitsC. (\byear2013). \btitleRobust and efficient configurational molecular sampling via Langevin dynamics. \bjournalThe Journal of chemical physics \bvolume138. \endbibitem
  27. {bbook}[author] \bauthor\bsnmLeimkuhler, \bfnmBen\binitsB. and \bauthor\bsnmMatthews, \bfnmCharles\binitsC. (\byear2015). \btitleMolecular dynamics. \bseriesInterdisciplinary Applied Mathematics \bvolume39. \bpublisherSpringer, Cham \bnoteWith deterministic and stochastic numerical methods. \bmrnumber3362507 \endbibitem
  28. {barticle}[author] \bauthor\bsnmLeimkuhler, \bfnmBenedict\binitsB., \bauthor\bsnmMatthews, \bfnmCharles\binitsC. and \bauthor\bsnmStoltz, \bfnmGabriel\binitsG. (\byear2016). \btitleThe computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. \bjournalIMA J. Numer. Anal. \bvolume36 \bpages13–79. \bdoi10.1093/imanum/dru056 \bmrnumber3463433 \endbibitem
  29. {barticle}[author] \bauthor\bsnmLeimkuhler, \bfnmBenedict\binitsB., \bauthor\bsnmPaulin, \bfnmDaniel\binitsD. and \bauthor\bsnmWhalley, \bfnmPeter A\binitsP. A. (\byear2023). \btitleContraction and convergence rates for discretized kinetic Langevin dynamics. \bjournalarXiv preprint arXiv:2302.10684. \endbibitem
  30. {barticle}[author] \bauthor\bsnmLeimkuhler, \bfnmBenedict\binitsB., \bauthor\bsnmPaulin, \bfnmDaniel\binitsD. and \bauthor\bsnmWhalley, \bfnmPeter A\binitsP. A. (\byear2023). \btitleContraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators. \bjournalarXiv preprint arXiv:2306.08592. \endbibitem
  31. {barticle}[author] \bauthor\bsnmLiang, \bfnmFaming\binitsF. and \bauthor\bsnmWong, \bfnmWing Hung\binitsW. H. (\byear2001). \btitleReal-parameter evolutionary Monte Carlo with applications to Bayesian mixture models. \bjournalJ. Amer. Statist. Assoc. \bvolume96 \bpages653–666. \bdoi10.1198/016214501753168325 \bmrnumber1946432 \endbibitem
  32. {barticle}[author] \bauthor\bsnmMangoubi, \bfnmOren\binitsO. and \bauthor\bsnmSmith, \bfnmAaron\binitsA. (\byear2017). \btitleRapid mixing of Hamiltonian Monte Carlo on strongly log-concave distributions. \bjournalarXiv preprint arXiv:1708.07114. \endbibitem
  33. {barticle}[author] \bauthor\bsnmMattingly, \bfnmJ. C.\binitsJ. C., \bauthor\bsnmStuart, \bfnmA. M.\binitsA. M. and \bauthor\bsnmHigham, \bfnmD. J.\binitsD. J. (\byear2002). \btitleErgodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. \bjournalStochastic Process. Appl. \bvolume101 \bpages185–232. \bdoi10.1016/S0304-4149(02)00150-3 \bmrnumber1931266 \endbibitem
  34. {barticle}[author] \bauthor\bsnmMcLachlan, \bfnmRobert I.\binitsR. I. and \bauthor\bsnmQuispel, \bfnmG. Reinout W.\binitsG. R. W. (\byear2002). \btitleSplitting methods. \bjournalActa Numer. \bvolume11 \bpages341–434. \bdoi10.1017/S0962492902000053 \bmrnumber2009376 \endbibitem
  35. {barticle}[author] \bauthor\bsnmMei, \bfnmSong\binitsS., \bauthor\bsnmMontanari, \bfnmAndrea\binitsA. and \bauthor\bsnmNguyen, \bfnmPhan-Minh\binitsP.-M. (\byear2018). \btitleA mean field view of the landscape of two-layer neural networks. \bjournalProc. Natl. Acad. Sci. USA \bvolume115 \bpagesE7665–E7671. \bmrnumber3845070 \endbibitem
  36. {barticle}[author] \bauthor\bsnmMei, \bfnmSong\binitsS., \bauthor\bsnmMontanari, \bfnmAndrea\binitsA. and \bauthor\bsnmNguyen, \bfnmPhan-Minh\binitsP.-M. (\byear2018). \btitleA mean field view of the landscape of two-layer neural networks. \bjournalProc. Natl. Acad. Sci. USA \bvolume115 \bpagesE7665–E7671. \bdoi10.1073/pnas.1806579115 \bmrnumber3845070 \endbibitem
  37. {barticle}[author] \bauthor\bsnmMelchionna, \bfnmSimone\binitsS. (\byear2007). \btitleDesign of quasisymplectic propagators for Langevin dynamics. \bjournalThe Journal of chemical physics \bvolume127. \endbibitem
  38. {bbook}[author] \bauthor\bsnmMilstein, \bfnmG. N.\binitsG. N. and \bauthor\bsnmTretyakov, \bfnmM. V.\binitsM. V. (\byear2004). \btitleStochastic numerics for mathematical physics. \bseriesScientific Computation. \bpublisherSpringer-Verlag, Berlin. \bdoi10.1007/978-3-662-10063-9 \bmrnumber2069903 \endbibitem
  39. {barticle}[author] \bauthor\bsnmMonmarché, \bfnmPierre\binitsP. (\byear2021). \btitleHigh-dimensional MCMC with a standard splitting scheme for the underdamped Langevin diffusion. \bjournalElectron. J. Stat. \bvolume15 \bpages4117–4166. \bdoi10.1214/21-ejs1888 \bmrnumber4309974 \endbibitem
  40. {barticle}[author] \bauthor\bsnmMonmarché, \bfnmPierre\binitsP. (\byear2024). \btitleAn entropic approach for Hamiltonian Monte Carlo: the idealized case. \bjournalAnn. Appl. Probab. \endbibitem
  41. {barticle}[author] \bauthor\bsnmPaulin, \bfnmDaniel\binitsD. and \bauthor\bsnmWhalley, \bfnmPeter A.\binitsP. A. (\byear2024). \btitleCorrection to “Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations”. \bjournalarXiv preprint arXiv: arXiv:2402.08711. \endbibitem
  42. {barticle}[author] \bauthor\bsnmRotskoff, \bfnmGrant\binitsG. and \bauthor\bsnmVanden-Eijnden, \bfnmEric\binitsE. (\byear2022). \btitleTrainability and Accuracy of Artificial Neural Networks: An Interacting Particle System Approach. \bjournalCommunications on Pure and Applied Mathematics \bvolume75 \bpages1889-1935. \endbibitem
  43. {barticle}[author] \bauthor\bsnmSanz-Serna, \bfnmJesus María\binitsJ. M. and \bauthor\bsnmZygalakis, \bfnmKonstantinos C.\binitsK. C. (\byear2021). \btitleWasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations. \bjournalJ. Mach. Learn. Res. \bvolume22 \bpagesPaper No. 242, 37. \bdoi10.1080/14685248.2020.1855352 \bmrnumber4329821 \endbibitem
  44. {barticle}[author] \bauthor\bsnmSchuh, \bfnmKatharina\binitsK. (\byear2024). \btitleGlobal contractivity for Langevin dynamics with distribution-dependent forces and uniform in time propagation of chaos. \bjournalAnn. Inst. Henri Poincaré Probab. Stat. \endbibitem
  45. {barticle}[author] \bauthor\bsnmShen, \bfnmRuoqi\binitsR. and \bauthor\bsnmLee, \bfnmYin Tat\binitsY. T. (\byear2019). \btitleThe randomized midpoint method for log-concave sampling. \bjournalAdvances in Neural Information Processing Systems \bvolume32. \endbibitem
  46. {barticle}[author] \bauthor\bsnmSirignano, \bfnmJustin\binitsJ. and \bauthor\bsnmSpiliopoulos, \bfnmKonstantinos\binitsK. (\byear2022). \btitleMean field analysis of deep neural networks. \bjournalMath. Oper. Res. \bvolume47 \bpages120–152. \bmrnumber4403748 \endbibitem
  47. {barticle}[author] \bauthor\bsnmSkeel, \bfnmRobert D\binitsR. D. (\byear1999). \btitleIntegration schemes for molecular dynamics and related applications. \bjournalThe Graduate Student’s Guide to Numerical Analysis’ 98: Lecture Notes from the VIII EPSRC Summer School in Numerical Analysis \bpages119–176. \endbibitem
  48. {barticle}[author] \bauthor\bsnmSkeel, \bfnmRobert D\binitsR. D. and \bauthor\bsnmIzaguirre, \bfnmJesüs A\binitsJ. A. (\byear2002). \btitleAn impulse integrator for Langevin dynamics. \bjournalMolecular Physics \bvolume100 \bpages3885–3891. \endbibitem
  49. {barticle}[author] \bauthor\bsnmVillani, \bfnmCédric\binitsC. (\byear2009). \btitleHypocoercivity. \bjournalMem. Amer. Math. Soc. \bvolume202 \bpagesiv+141. \bdoi10.1090/S0065-9266-09-00567-5 \bmrnumber2562709 \endbibitem
  50. {barticle}[author] \bauthor\bsnmWu, \bfnmLiming\binitsL. (\byear2001). \btitleLarge and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems. \bjournalStochastic Process. Appl. \bvolume91 \bpages205–238. \bdoi10.1016/S0304-4149(00)00061-2 \bmrnumber1807683 \endbibitem
Citations (6)

Summary

We haven't generated a summary for this paper yet.