Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 188 tok/s Pro
2000 character limit reached

Generation of quantum phases of matter and finding a maximum-weight independent set of unit-disk graphs using Rydberg atoms (2405.09803v3)

Published 16 May 2024 in quant-ph

Abstract: Recent progress in quantum computing and quantum simulation of many-body systems with arrays of neutral atoms using Rydberg excitation has provided unforeseen opportunities towards computational advantage in solving various optimization problems. The problem of a maximum-weight independent set of unit-disk graphs is an example of an NP-hard optimization problem. It involves finding the largest set of vertices with the maximum sum of their weights for a graph which has edges connecting all pairs of vertices within a unit distance. This problem can be solved using quantum annealing with an array of interacting Rydberg atoms. For a particular graph, a spatial arrangement of atoms represents vertices of the graph, while the detuning from resonance at Rydberg excitation defines the weights of these vertices. The edges of the graph can be drawn according to the unit disk criterion. Maximum-weight independent sets can be obtained by applying a variational quantum adiabatic algorithm. We consider driving the quantum system of interacting atoms to the many-body ground state using a non-linear quasi-adiabatic profile for sweeping the Rydberg detuning. We also propose using a quantum wire which is a set of auxiliary atoms of a different chemical element to mediate strong coupling between the remote vertices of the graph. We investigate this effect for different lengths of the quantum wire. We also investigate the quantum phases of matter realizing commensurate and incommensurate phases in one- and two-dimensional spatial arrangements of the atomic array.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. S. Arora and B. Barak, Computational complexity: a modern approach (Cambridge University Press, 2009).
  2. J. A. Bondy, Graph theory with applications (1982).
  3. L. T. Brady and S. Hadfield, Iterative Quantum Algorithms for Maximum Independent Set: A Tale of Low-Depth Quantum Algorithms, arXiv preprint arXiv:2309.13110 10.48550/arXiv.2309.13110 (2023).
  4. W. d. S. Coelho, M. D’Arcangelo, and L.-P. Henry, Efficient protocol for solving combinatorial graph problems on neutral-atom quantum processors, arXiv preprint arXiv:2207.13030 10.48550/arXiv.2207.13030 (2022).
  5. A. Byun, M. Kim, and J. Ahn, Finding the maximum independent sets of platonic graphs using Rydberg atoms, PRX Quantum 3, 030305 (2022).
  6. H. Yeo, H. E. Kim, and K. Jeong, Approximating maximum independent set on Rydberg atom arrays using local detunings, arXiv preprint arXiv:2402.09180 10.48550/arXiv.2402.09180 (2024).
  7. M. H. Muñoz-Arias, S. Kourtis, and A. Blais, Low-depth Clifford circuits approximately solve MaxCut, arXiv preprint arXiv:2310.15022 10.48550/arXiv.2310.15022 (2023).
  8. G. V. Paradezhenko, A. A. Pervishko, and D. Yudin, Probabilistic tensor optimization of quantum circuits for the max−⁢k⁢−cutmax−𝑘−cut\text{max}\text{$-$}k\text{$-$}\text{cut}roman_max - italic_k - roman_cut problem, Phys. Rev. A 109, 012436 (2024).
  9. N. Przulj, Graph theory analysis of protein-protein interactions, Knowledge Discovery in Proteomics 8, 73 (2005).
  10. I. Hen and M. S. Sarandy, Driver hamiltonians for constrained optimization in quantum annealing, Phys. Rev. A 93, 062312 (2016).
  11. A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nature Physics 16, 132 (2020).
  12. R. J. Leroy and R. B. Bernstein, Dissociation energies of diatomic moleculles from vibrational spacings of higher levels: application to the halogens, Chemical Physics Letters 5, 42 (1970).
  13. T. W. Kibble, Topology of cosmic domains and strings, Journal of Physics A: Mathematical and General 9, 1387 (1976).
  14. W. H. Zurek, Cosmological experiments in superfluid helium?, Nature 317, 505 (1985).
  15. W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a Quantum Phase Transition, Phys. Rev. Lett. 95, 105701 (2005).
  16. M. Rader and A. M. Läuchli, Floating phases in one-dimensional Rydberg Ising chains, arXiv preprint arXiv:1908.02068 10.48550/arXiv.1908.02068 (2019).
  17. I. A. Maceira, N. Chepiga, and F. Mila, Conformal and chiral phase transitions in Rydberg chains, Phys. Rev. Res. 4, 043102 (2022).
  18. P. Fendley, K. Sengupta, and S. Sachdev, Competing density-wave orders in a one-dimensional hard-boson model, Phys. Rev. B 69, 075106 (2004).
  19. N. W. Johnson, Convex polyhedra with regular faces, Canadian Journal of mathematics 18, 169 (1966).
  20. X. Qiu, P. Zoller, and X. Li, Programmable Quantum Annealing Architectures with Ising Quantum Wires, PRX Quantum 1, 020311 (2020).
  21. P. M. Ireland, D. M. Walker, and J. D. Pritchard, Interspecies Förster resonances for Rb-Cs Rydberg d𝑑ditalic_d-states for enhanced multi-qubit gate fidelities, Phys. Rev. Res. 6, 013293 (2024).
  22. F. Cesa and H. Pichler, Universal Quantum Computation in Globally Driven Rydberg Atom Arrays, Phys. Rev. Lett. 131, 170601 (2023).
  23. The Rydberg blockade radius Rbsubscript𝑅𝑏R_{b}italic_R start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT of wire atoms is slightly different from the Rydberg blockade radius of graph atoms.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com