The DNA of Calabi-Yau Hypersurfaces (2405.08871v1)
Abstract: We implement Genetic Algorithms for triangulations of four-dimensional reflexive polytopes which induce Calabi-Yau threefold hypersurfaces via Batryev's construction. We demonstrate that such algorithms efficiently optimize physical observables such as axion decay constants or axion-photon couplings in string theory compactifications. For our implementation, we choose a parameterization of triangulations that yields homotopy inequivalent Calabi-Yau threefolds by extending fine, regular triangulations of two-faces, thereby eliminating exponentially large redundancy factors in the map from polytope triangulations to Calabi-Yau hypersurfaces. In particular, we discuss how this encoding renders the entire Kreuzer-Skarke list amenable to a variety of optimization strategies, including but not limited to Genetic Algorithms. To achieve optimal performance, we tune the hyperparameters of our Genetic Algorithm using Bayesian optimization. We find that our implementation vastly outperforms other sampling and optimization strategies like Markov Chain Monte Carlo or Simulated Annealing. Finally, we showcase that our Genetic Algorithm efficiently performs optimization even for the maximal polytope with Hodge numbers $h{1,1} = 491$, where we use it to maximize axion-photon couplings.
- W. Taylor and Y.-N. Wang, “The F-theory geometry with most flux vacua,” JHEP 12 (2015) 164, arXiv:1511.03209 [hep-th].
- M. Kreuzer and H. Skarke, “Complete classification of reflexive polyhedra in four-dimensions,” Adv. Theor. Math. Phys. 4 (2000) 1209–1230, arXiv:hep-th/0002240.
- A. Chandra, A. Constantin, C. S. Fraser-Taliente, T. R. Harvey, and A. Lukas, “Enumerating Calabi-Yau Manifolds: Placing bounds on the number of diffeomorphism classes in the Kreuzer-Skarke list,” arXiv:2310.05909 [hep-th].
- N. Gendler, N. MacFadden, L. McAllister, J. Moritz, R. Nally, A. Schachner, and M. Stillman, “Counting Calabi-Yau Threefolds,” arXiv:2310.06820 [hep-th].
- V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties,” J. Alg. Geom. 3 (1994) 493–545, arXiv:alg-geom/9310003.
- M. Demirtas, A. Rios-Tascon, and L. McAllister, “CYTools: A Software Package for Analyzing Calabi-Yau Manifolds,” arXiv:2211.03823 [hep-th].
- M. Cicoli, J. P. Conlon, A. Maharana, S. Parameswaran, F. Quevedo, and I. Zavala, “String Cosmology: from the Early Universe to Today,” arXiv:2303.04819 [hep-th].
- L. McAllister and F. Quevedo, “Moduli Stabilization in String Theory,” arXiv:2310.20559 [hep-th].
- M. R. Douglas and L. McAllister, “Compactification of Superstring Theory,” arXiv:2310.20118 [hep-th].
- S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, “De Sitter vacua in string theory,” Phys. Rev. D 68 (2003) 046005, arXiv:hep-th/0301240.
- B. C. Allanach, D. Grellscheid, and F. Quevedo, “Genetic algorithms and experimental discrimination of SUSY models,” JHEP 07 (2004) 069, arXiv:hep-ph/0406277.
- Y. Akrami, P. Scott, J. Edsjo, J. Conrad, and L. Bergstrom, “A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms,” JHEP 04 (2010) 057, arXiv:0910.3950 [hep-ph].
- S. Abel, D. G. Cerdeño, and S. Robles, “The Power of Genetic Algorithms: what remains of the pMSSM?,” arXiv:1805.03615 [hep-ph].
- T. S. Metcalfe, R. E. Nather, and D. E. Winget, “Genetic-algorithm-based asteroseismological analysis of the dbv white dwarf gd 358,” Astrophys. J. 545 (2000) 974, arXiv:astro-ph/0008022.
- M. R. Mokiem, A. de Koter, J. Puls, A. Herrero, F. Najarro, and M. R. Villamariz, “Spectral analysis of early-type stars using a genetic algorithm based fitting method,” Astron. Astrophys. 441 (2005) 711, arXiv:astro-ph/0506751.
- V. Rajpaul, “Genetic algorithms in astronomy and astrophysics,” in 56th Annual Conference of the South African Institute of Physics, pp. 519–524. 2, 2012. arXiv:1202.1643 [astro-ph.IM].
- S. Nesseris and J. Garcia-Bellido, “A new perspective on Dark Energy modeling via Genetic Algorithms,” JCAP 11 (2012) 033, arXiv:1205.0364 [astro-ph.CO].
- R. Hogan, M. Fairbairn, and N. Seeburn, “GAz: A Genetic Algorithm for Photometric Redshift Estimation,” Mon. Not. Roy. Astron. Soc. 449 no. 2, (2015) 2040–2046, arXiv:1412.5997 [astro-ph.IM].
- S. A. Abel, A. Constantin, T. R. Harvey, and A. Lukas, “Cosmic Inflation and Genetic Algorithms,” Fortsch. Phys. 71 no. 1, (2023) 2200161, arXiv:2208.13804 [hep-th].
- J. Blåbäck, U. Danielsson, and G. Dibitetto, “Fully stable dS vacua from generalised fluxes,” JHEP 08 (2013) 054, arXiv:1301.7073 [hep-th].
- C. Damian, L. R. Diaz-Barron, O. Loaiza-Brito, and M. Sabido, “Slow-Roll Inflation in Non-geometric Flux Compactification,” JHEP 06 (2013) 109, arXiv:1302.0529 [hep-th].
- C. Damian and O. Loaiza-Brito, “More stable de Sitter vacua from S-dual nongeometric fluxes,” Phys. Rev. D 88 no. 4, (2013) 046008, arXiv:1304.0792 [hep-th].
- J. Blåbäck, U. Danielsson, and G. Dibitetto, “Accelerated Universes from type IIA Compactifications,” JCAP 03 (2014) 003, arXiv:1310.8300 [hep-th].
- J. Blåbäck, D. Roest, and I. Zavala, “De Sitter Vacua from Nonperturbative Flux Compactifications,” Phys. Rev. D 90 no. 2, (2014) 024065, arXiv:1312.5328 [hep-th].
- S. Abel and J. Rizos, “Genetic Algorithms and the Search for Viable String Vacua,” JHEP 08 (2014) 010, arXiv:1404.7359 [hep-th].
- F. Ruehle, “Evolving neural networks with genetic algorithms to study the String Landscape,” JHEP 08 (2017) 038, arXiv:1706.07024 [hep-th].
- A. Cole, A. Schachner, and G. Shiu, “Searching the Landscape of Flux Vacua with Genetic Algorithms,” JHEP 11 (2019) 045, arXiv:1907.10072 [hep-th].
- A. Cole, S. Krippendorf, A. Schachner, and G. Shiu, “Probing the Structure of String Theory Vacua with Genetic Algorithms and Reinforcement Learning,” in 35th Conference on Neural Information Processing Systems. 11, 2021. arXiv:2111.11466 [hep-th].
- S. Abel, A. Constantin, T. R. Harvey, and A. Lukas, “Evolving Heterotic Gauge Backgrounds: Genetic Algorithms versus Reinforcement Learning,” Fortsch. Phys. 70 no. 5, (2022) 2200034, arXiv:2110.14029 [hep-th].
- G. J. Loges and G. Shiu, “Breeding Realistic D-Brane Models,” Fortsch. Phys. 70 no. 5, (2022) 2200038, arXiv:2112.08391 [hep-th].
- S. A. Abel, A. Constantin, T. R. Harvey, A. Lukas, and L. A. Nutricati, “Decoding Nature with Nature’s Tools: Heterotic Line Bundle Models of Particle Physics with Genetic Algorithms and Quantum Annealing,” arXiv:2306.03147 [hep-th].
- F. Denef and M. R. Douglas, “Computational complexity of the landscape. I.,” Annals Phys. 322 (2007) 1096–1142, arXiv:hep-th/0602072.
- N. Bao, R. Bousso, S. Jordan, and B. Lackey, “Fast optimization algorithms and the cosmological constant,” Phys. Rev. D 96 no. 10, (2017) 103512, arXiv:1706.08503 [hep-th].
- F. Denef, M. R. Douglas, B. Greene, and C. Zukowski, “Computational complexity of the landscape II—Cosmological considerations,” Annals Phys. 392 (2018) 93–127, arXiv:1706.06430 [hep-th].
- J. Halverson and F. Ruehle, “Computational Complexity of Vacua and Near-Vacua in Field and String Theory,” Phys. Rev. D 99 no. 4, (2019) 046015, arXiv:1809.08279 [hep-th].
- P. Berglund, Y.-H. He, E. Heyes, E. Hirst, V. Jejjala, and A. Lukas, “New Calabi-Yau Manifolds from Genetic Algorithms,” arXiv:2306.06159 [hep-th].
- M. Demirtas, L. McAllister, and A. Rios-Tascon, “Bounding the Kreuzer-Skarke Landscape,” Fortsch. Phys. 68 (2020) 2000086, arXiv:2008.01730 [hep-th].
- J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Majumder, “Polytopes and Machine Learning,” arXiv:2109.09602 [math.CO].
- D. S. Berman, Y.-H. He, and E. Hirst, “Machine learning Calabi-Yau hypersurfaces,” Phys. Rev. D 105 no. 6, (2022) 066002, arXiv:2112.06350 [hep-th].
- P. Berglund, B. Campbell, and V. Jejjala, “Machine Learning Kreuzer-Skarke Calabi-Yau Threefolds,” arXiv:2112.09117 [hep-th].
- Springer Science & Business Media, 2010.
- C. T. C. Wall, “Classification problems in differential topology. v,” Inventiones Mathematicae 1 no. 4, (1966) 355–374. https://doi.org/10.1007/BF01389738.
- N. MacFadden, “Efficient Algorithm for Generating Homotopy Inequivalent Calabi-Yaus,” arXiv:2309.10855 [hep-th].
- A. P. Braun, C. Long, L. McAllister, M. Stillman, and B. Sung, “The Hodge Numbers of Divisors of Calabi-Yau Threefold Hypersurfaces,” arXiv:1712.04946 [hep-th].
- P. Charbonneau, “Genetic Algorithms in Astronomy and Astrophysics,” ApJS 101 (1995) 309.
- P. Charbonneau and B. Knapp, “A user’s guide to pikaia 1.0,” Tech. Rep. TN-418+IA, National Center for Atmospheric Research (1995) .
- P. Charbonneau, “An introduction to genetic algorithms for numerical optimization,” NCAR Technical Note (2002) 74.
- P. Charbonneau, “Release notes for pikaia 1.2,” Tech. Rep. TN-451+STR, National Center for Atmospheric Research (2002) .
- J. Holland, Adaptation in Natural and Artificial Systems. The MIT Press reprinted, 1992.
- Addison-Wesley, 1989.
- J. Holland, The Royal Road for Genetic Algorithms: Fitness Landscapes and GA Performance. MIT Press, 1992.
- Springer Science & Business Media, 2002.
- R. Haupt, Practical genetic algorithms. Wyley, 2004.
- J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, “Funnels, pathways, and the energy landscape of protein folding: a synthesis,” Proteins: Structure, Function, and Bioinformatics 21 no. 3, (1995) 167–195.
- J. Khoury and O. Parrikar, “Search Optimization, Funnel Topography, and Dynamical Criticality on the String Landscape,” JCAP 12 (2019) 014, arXiv:1907.07693 [hep-th].
- A. Schachner, On Vacuum Structures and Quantum Corrections in String Theory. PhD thesis, Cambridge U., University of Cambridge, Cambridge U., 2022.
- M. Mitchell, “L.d. davis, handbook of genetic algorithms,” Artificial Intelligence 100 no. 1, (1998) 325–330.
- F. Ruehle, “Data science applications to string theory,” Phys. Rept. 839 (2020) 1–117.
- C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning series. MIT Press, 2005. https://books.google.com/books?id=H3aMEAAAQBAJ.
- I. Roman, J. Ceberio, A. Mendiburu, and J. A. Lozano, “Bayesian optimization for parameter tuning in evolutionary algorithms,” in 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4839–4845, IEEE. 2016.
- J. Karro, G. Kochanski, and D. Golovin, “Black box optimization via a bayesian-optimized genetic algorithm,” Proc. OPTML 2017 (2017) 10th.
- C. Ruther and J. Rieck, “A bayesian optimization approach for tuning a genetic algorithm solving practical-oriented pickup and delivery problems,” IEEE Transactions on Automation Science and Engineering (2021) 1–12.
- S. K. Smit and A. E. Eiben, “Comparing parameter tuning methods for evolutionary algorithms,” in 2009 IEEE congress on evolutionary computation, pp. 399–406, IEEE. 2009.
- C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning methods for metaheuristics,” IEEE transactions on evolutionary computation 24 no. 2, (2019) 201–216.
- P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint arXiv:1807.02811 (2018) .
- R. Garnett, Bayesian Optimization. Cambridge University Press, 2023.
- U. von Toussaint, “Bayesian inference in physics,” Rev. Mod. Phys. 83 (Sep, 2011) 943–999. https://link.aps.org/doi/10.1103/RevModPhys.83.943.
- F. Nogueira, “Bayesian Optimization: Open source constrained global optimization tool for Python,” 2014–. https://github.com/fmfn/BayesianOptimization.
- N. Gendler, D. J. E. Marsh, L. McAllister, and J. Moritz, “Glimmers from the Axiverse,” arXiv:2309.13145 [hep-th].
- M. Perry, “simanneal.” https://github.com/perrygeo/simanneal, 2019.
- R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
- X. G. Wen and E. Witten, “World Sheet Instantons and the Peccei-Quinn Symmetry,” Phys. Lett. B 166 (1986) 397–401.
- P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06 (2006) 051, arXiv:hep-th/0605206.
- A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, “String Axiverse,” Phys. Rev. D 81 (2010) 123530, arXiv:0905.4720 [hep-th].
- M. Demirtas, C. Long, L. McAllister, and M. Stillman, “The Kreuzer-Skarke Axiverse,” JHEP 04 (2020) 138, arXiv:1808.01282 [hep-th].
- V. M. Mehta, M. Demirtas, C. Long, D. J. E. Marsh, L. McAllister, and M. J. Stott, “Superradiance in string theory,” JCAP 07 (2021) 033, arXiv:2103.06812 [hep-th].
- M. Demirtas, N. Gendler, C. Long, L. McAllister, and J. Moritz, “PQ axiverse,” JHEP 06 (2023) 092, arXiv:2112.04503 [hep-th].
- N. Gendler, O. Janssen, M. Kleban, J. La Madrid, and V. M. Mehta, “Axion minima in string theory,” arXiv:2309.01831 [hep-th].
- M. Cicoli, V. Guidetti, N. Righi, and A. Westphal, “Fuzzy Dark Matter candidates from string theory,” JHEP 05 (2022) 107, arXiv:2110.02964 [hep-th].
- S. Krippendorf, R. Kroepsch, and M. Syvaeri, “Revealing systematics in phenomenologically viable flux vacua with reinforcement learning,” arXiv:2107.04039 [hep-th].
- N. MacFadden, S. Orevkov, and M. Stepniczka, “Bounding Calabi-Yau Threefolds at h1,1=491superscriptℎ11491h^{1,1}=491italic_h start_POSTSUPERSCRIPT 1 , 1 end_POSTSUPERSCRIPT = 491.” work in progress.
- J. Halverson, C. Long, B. Nelson, and G. Salinas, “Towards string theory expectations for photon couplings to axionlike particles,” Phys. Rev. D 100 no. 10, (2019) 106010, arXiv:1909.05257 [hep-th].
- J. P. Conlon and F. Quevedo, “Astrophysical and cosmological implications of large volume string compactifications,” JCAP 08 (2007) 019, arXiv:0705.3460 [hep-ph].
- M. Cicoli, M. Goodsell, and A. Ringwald, “The type IIB string axiverse and its low-energy phenomenology,” JHEP 10 (2012) 146, arXiv:1206.0819 [hep-th].
- J. Halverson, C. Long, B. Nelson, and G. Salinas, “Axion reheating in the string landscape,” Phys. Rev. D 99 no. 8, (2019) 086014, arXiv:1903.04495 [hep-th].
- S. Schallmoser, S. Krippendorf, F. Chadha-Day, and J. Weller, “Updated bounds on axion-like particles from X-ray observations,” Mon. Not. Roy. Astron. Soc. 514 no. 1, (2022) 329–341, arXiv:2108.04827 [astro-ph.CO].