Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 98 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Quantum Origin of Limit Cycles, Fixed Points, and Critical Slowing Down (2405.08866v2)

Published 14 May 2024 in quant-ph, cond-mat.quant-gas, cond-mat.stat-mech, and nlin.AO

Abstract: Among the most iconic features of classical dissipative dynamics are persistent limit-cycle oscillations and critical slowing down at the onset of such oscillations, where the system relaxes purely algebraically in time. On the other hand, quantum systems subject to generic Markovian dissipation decohere exponentially in time, approaching a unique steady state. Here we show how coherent limit-cycle oscillations and algebraic decay can emerge in a quantum system governed by a Markovian master equation as one approaches the classical limit, illustrating general mechanisms using a single-spin model and a two-site lossy Bose-Hubbard model. In particular, we demonstrate that the fingerprint of a limit cycle is a slow-decaying branch with vanishing decoherence rates in the Liouville spectrum, while a power-law decay is realized by a spectral collapse at the bifurcation point. We also show how these are distinct from the case of a classical fixed point, for which the quantum spectrum is gapped and can be generated from the linearized classical dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. P. Ehrenfest, Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik, Z. Phys. 45, 455 (1927).
  2. K. Hepp, The classical limit for quantum mechanical correlation functions, Commun. Math. Phys. 35, 265 (1974).
  3. L. G. Yaffe, Large N𝑁Nitalic_N limits as classical mechanics, Rev. Mod. Phys. 54, 407 (1982).
  4. L. E. Reichl and W. A. Lin, The search for a quantum KAM theorem, Found. Phys. 17, 689 (1987).
  5. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).
  6. W. H. Zurek, Decoherence and the transition from quantum to classical, Phys. Today 44, 36 (1991).
  7. U. Klein, What is the limit ℏ→0→Planck-constant-over-2-pi0\hbar\to 0roman_ℏ → 0 of quantum theory?, Am. J. Phys. 80, 1009 (2012).
  8. O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52, 1 (1984).
  9. D. T. Robb and L. E. Reichl, Chaos in a two-spin system with applied magnetic field, Phys. Rev. E 57, 2458 (1998).
  10. J. Emerson and L. Ballentine, Characteristics of quantum-classical correspondence for two interacting spins, Phys. Rev. A 63, 052103 (2001).
  11. M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch, Comparative quantum and semiclassical analysis of atom-field systems. II. Chaos and regularity, Phys. Rev. A 89, 032102 (2014).
  12. M. Rautenberg and M. Gärttner, Classical and quantum chaos in a three-mode bosonic system, Phys. Rev. A 101, 053604 (2020).
  13. S. Pappalardi, A. Polkovnikov, and A. Silva, Quantum echo dynamics in the Sherrington-Kirkpatrick model, SciPost Phys. 9, 21 (2020).
  14. A. Lerose and S. Pappalardi, Bridging entanglement dynamics and chaos in semiclassical systems, Phys. Rev. A 102, 032404 (2020).
  15. L. E. Reichl, The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations, 3rd ed. (Springer, 2021).
  16. J. Novotný and P. Stránský, Relative asymptotic oscillations of the out-of-time-ordered correlator as a quantum chaos indicator, Phys. Rev. E 107, 054220 (2023).
  17. G. Nakerst and M. Haque, Chaos in the three-site Bose-Hubbard model: Classical versus quantum, Phys. Rev. E 107, 024210 (2023).
  18. R. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers (Oxford University Press, 2000).
  19. G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976).
  20. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N𝑁Nitalic_N-level systems, J. Math. Phys. 17, 821 (1976).
  21. H. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
  22. D. E. Evans, Irreducible quantum dynamical semigroups, Commun. Math. Phys. 54, 293 (1977).
  23. B. Buča and T. Prosen, A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains, New J. Phys. 14, 073007 (2012).
  24. V. V. Albert and L. Jiang, Symmetries and conserved quantities in Lindblad master equations, Phys. Rev. A 89, 022118 (2014).
  25. A. Giraldo, N. G. Broderick, and B. Krauskopf, Chaotic switching in driven-dissipative Bose-Hubbard dimers: when a flip bifurcation meets a T-point in ℝ4superscriptℝ4\mathbb{R}^{4}blackboard_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, Discret. Contin. Dyn. Syst. Ser. B 27, 4023 (2022a).
  26. W. T. Strunz and I. C. Percival, Classical mechanics from quantum state diffusion-a phase-space approach, J. Phys. A 31, 1801 (1998).
  27. J. Dubois, U. Saalmann, and J. M. Rost, Semi-classical Lindblad master equation for spin dynamics, J. Phys. A 54, 235201 (2021).
  28. T. K. Leen, R. Friel, and D. Nielsen, Eigenfunctions of the multidimensional linear noise Fokker-Planck operator via ladder operators, arXiv:1609.01194 .
  29. T. Prosen and T. H. Seligman, Quantization over boson operator spaces, J. Phys. A 43, 392004 (2010).
  30. T. E. Lee and H. R. Sadeghpour, Quantum synchronization of quantum van der Pol oscillators with trapped ions, Phys. Rev. Lett. 111, 234101 (2013).
  31. T. E. Lee, C.-K. Chan, and S. Wang, Entanglement tongue and quantum synchronization of disordered oscillators, Phys. Rev. E 89, 022913 (2014).
  32. S. Walter, A. Nunnenkamp, and C. Bruder, Quantum synchronization of two Van der Pol oscillators, Ann. Phys. (Berlin) 527, 131 (2014).
  33. A. Roulet and C. Bruder, Synchronizing the smallest possible system, Phys. Rev. Lett. 121, 053601 (2018).
  34. J. S. Ferreira and P. Ribeiro, Lipkin-Meshkov-Glick model with Markovian dissipation: A description of a collective spin on a metallic surface, Phys. Rev. B 100, 184422 (2019).
  35. S. Dutta and N. R. Cooper, Critical response of a quantum van der Pol oscillator, Phys. Rev. Lett. 123, 250401 (2019).
  36. W.-K. Mok, L.-C. Kwek, and H. Heimonen, Synchronization boost with single-photon dissipation in the deep quantum regime, Phys. Rev. Res. 2, 033422 (2020).
  37. K. Seibold, R. Rota, and V. Savona, Dissipative time crystal in an asymmetric nonlinear photonic dimer, Phys. Rev. A 101, 033839 (2020).
  38. L. Ben Arosh, M. C. Cross, and R. Lifshitz, Quantum limit cycles and the Rayleigh and van der Pol oscillators, Phys. Rev. Res. 3, 013130 (2021).
  39. Y. Kato and H. Nakao, Turing instability in quantum activator–inhibitor systems, Sci. Rep. 12, 15573 (2022).
  40. N. Thomas and M. Senthilvelan, Quantum synchronization in quadratically coupled quantum van der Pol oscillators, Phys. Rev. A 106, 012422 (2022).
  41. A. Tomadin, S. Diehl, and P. Zoller, Nonequilibrium phase diagram of a driven and dissipative many-body system, Phys. Rev. A 83, 013611 (2011).
  42. Z. Cai and T. Barthel, Algebraic versus exponential decoherence in dissipative many-particle systems, Phys. Rev. Lett. 111, 150403 (2013).
  43. M. Žnidarič, Relaxation times of dissipative many-body quantum systems, Phys. Rev. E 92, 042143 (2015).
  44. M. V. Medvedyeva and S. Kehrein, Power-law approach to steady state in open lattices of noninteracting electrons, Phys. Rev. B 90, 205410 (2014).
  45. B. Baumgartner and H. Narnhofer, Analysis of quantum semigroups with GKS–Lindblad generators: II. General, J. Phys. A 41, 395303 (2008).
  46. B. Buča, J. Tindall, and D. Jaksch, Non-stationary coherent quantum many-body dynamics through dissipation, Nat. Commun. 10, 1730 (2019).
  47. B. Buča and D. Jaksch, Dissipation induced nonstationarity in a quantum gas, Phys. Rev. Lett. 123, 260401 (2019).
  48. C. Booker, B. Buča, and D. Jaksch, Non-stationarity and dissipative time crystals: spectral properties and finite-size effects, New J. Phys. 22, 085007 (2020).
  49. L. F. dos Prazeres, L. da Silva Souza, and F. Iemini, Boundary time crystals in collective d𝑑ditalic_d-level systems, Phys. Rev. B 103, 184308 (2021).
  50. B. Buča, C. Booker, and D. Jaksch, Algebraic theory of quantum synchronization and limit cycles under dissipation, SciPost Phys. 12, 097 (2022).
  51. H. Alaeian and B. Buča, Exact multistability and dissipative time crystals in interacting fermionic lattices, Commun. Phys. 5, 318 (2022).
  52. J. Dubois, U. Saalmann, and J. M. Rost, Symmetry-induced decoherence-free subspaces, Phys. Rev. Res. 5, L012003 (2023).
  53. J. Tindall, D. Jaksch, and C. S. Muñoz, On the generality of symmetry breaking and dissipative freezing in quantum trajectories, SciPost Phys. Core 6, 004 (2023).
  54. X. Li, Y. Li, and J. Jin, Synchronization of persistent oscillations in spin systems with nonlocal dissipation, Phys. Rev. A 107, 032219 (2023a).
  55. Y. Li, X. Li, and J. Jin, Quantum nonstationary phenomena of spin systems in collision models, Phys. Rev. A 107, 042205 (2023b).
  56. Y. Nakanishi and T. Sasamoto, Dissipative time crystals originating from parity-time symmetry, Phys. Rev. A 107, L010201 (2023).
  57. F. Iemini, D. Chang, and J. Marino, Dynamics of inhomogeneous spin ensembles with all-to-all interactions: Breaking permutational invariance, Phys. Rev. A 109, 032204 (2024).
  58. A. Ronveaux and F. M. Arscott, Heun’s Differential Equations (Oxford University Press, 1995).
Citations (5)

Summary

  • The paper explores how classical behaviors like limit cycles, fixed points, and algebraic decay emerge from quantum dissipative systems by analyzing the spectral properties of the Liouvillian operator.
  • It identifies distinct Liouvillian spectral signatures for quantum limit cycles (parabolic branch) and fixed points (wedge-shaped pattern) as systems approach the classical limit.
  • The study shows that critical slowing down and algebraic decay at classical critical points manifest quantum mechanically as a collapse of the Liouvillian spectrum onto the imaginary axis with infinite degenerate eigenmodes.

Quantum Origin of Limit Cycles, Fixed Points, and Critical Slowing Down

The paper "On the quantum origin of limit cycles, fixed points, and critical slowing down" by Shovan Dutta, Shu Zhang, and Masudul Haque explores the emergence of classical behaviors such as limit cycles, fixed points, and algebraic decay in quantum systems subjected to Markovian dissipation. This investigation is set against the backdrop of the well-established dilemma of reconciling classical phenomena with quantum mechanics, a topic that has been extensively analyzed in Hamiltonian systems but less so in dissipative ones.

Main Contributions and Results

The authors focus primarily on two quantum models: a single-spin model and a two-site lossy Bose-Hubbard model, demonstrating the emergence of classical behavior through the spectral properties of their Liouvillian operators. The paper establishes that the transition to classical dynamics can be inferred from specific patterns in the Liouvillian spectrum as the classical limit is approached.

  1. Limit Cycles:
    • The paper identifies a signature of quantum limit cycles as a parabolically structured branch in the Liouvillian spectrum, which becomes purely imaginary and equally spaced in the classical limit. The parabolic distortion at finite system sizes results in dephasing along the limit cycle trajectory, represented by ΔcS1\Delta_c \sim S^{-1}, where SS is the spin length or an equivalent parameter in other systems.
  2. Fixed Points:
    • Around classical fixed points, the quantum spectrum shows a wedge-shaped pattern where eigenvalues are linear combinations of the classical Jacobian's eigenvalues. This pattern emerges from a linear drift and diffusion in the Fokker-Planck equation, yielding a universal spectral form independent of specific model details.
  3. Algebraic Decay at Hopf Bifurcations:
    • At critical points such as Hopf bifurcations, where classical systems exhibit algebraic relaxation, the quantum spectrum collapses onto the imaginary axis. This collapse involves an infinite number of degenerate eigenmodes, each contributing to the long-time algebraic relaxation characteristically absent in purely quantum, exponential decay processes.

Theoretical and Practical Implications

This work provides a crucial step in understanding how classical nonlinear dynamics can be explained and predicted from the quantum Liouvillian framework. It suggests a pathway for describing quantum-to-classical transitions in general dissipative systems, highlighting the importance of the spectral properties of the Liouvillian superoperator.

From a theoretical perspective, this approach offers tools for analyzing quantum systems that approximate classical phenomena, pointing to potential applications in fields such as quantum control and quantum thermodynamics. It also raises intriguing questions about other nonlinear dynamics, such as period doubling and the onset of chaos, and how these might manifest in a quantum setting. Furthermore, the findings encourage investigations into whether statistical characteristics of Liouvillian spectra could conjecturally resemble those of Hamiltonian systems, as seen in established quantum chaos theories.

Broader Context and Future Directions

In the broader context of quantum mechanics, this paper aligns with contemporary efforts to bridge classical and quantum domains—an endeavor critical for the development of technologies like quantum computing and quantum simulations. Future work might explore more complex systems beyond the two models examined, and establish connections between Liouvillian statistics and emergent macroscopic phenomena, potentially offering new insights into the foundational aspects of quantum mechanics and the dynamics of open quantum systems.

This paper does not just add to the ongoing discussion on quantum-classical correspondence but also sets a solid foundation for addressing how classical dynamical behavior, including chaos and decoherence-free subspaces, emerges in the classical limit of quantum systems with gain and loss mechanisms.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube