Numerical Analysis of Resonant Axion-Photon Mixing: Part I (2405.08865v1)
Abstract: Many present-day axion searches attempt to probe the mixing of axions and photons, which occurs in the presence of an external magnetic field. While this process is well-understood in a number of simple and idealized contexts, a strongly varying or highly inhomogeneous background can impact the efficiency and evolution of the mixing in a non-trivial manner. In an effort to develop a generalized framework for analyzing axion-photon mixing in arbitrary systems, we focus in this work on directly solving the axion-modified form of Maxwell's equations across a simulation domain with a spatially varying background. We concentrate specifically on understanding resonantly enhanced axion-photon mixing in a highly magnetized plasma, which is a key ingredient for developing precision predictions of radio signals emanating from the magnetospheres of neutron stars. After illustrating the success and accuracy of our approach for simplified limiting cases, we compare our results with a number of analytic solutions recently derived to describe mixing in these systems. We find that our numerical method demonstrates a high level of agreement with one, but only one, of the published results. Interestingly, our method also recovers the mixing between the axion and magnetosonic-t and Alfv\'{e}n modes; these modes cannot escape from the regions of dense plasma, but could non-trivially alter the dynamics in certain environments. Future work will focus on extending our calculations to study resonant mixing in strongly variable backgrounds, mixing in generalized media (beyond the strong magnetic field limit), and the mixing of photons with other light bosonic fields, such as dark photons.
- R. D. Peccei and H. R. Quinn, CPCP\mathrm{CP}roman_CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38, 1440 (1977a).
- R. D. Peccei and H. R. Quinn, Constraints imposed by CPCP\mathrm{CP}roman_CP conservation in the presence of pseudoparticles, Phys. Rev. D 16, 1791 (1977b).
- S. Weinberg, A new light boson?, Phys. Rev. Lett. 40, 223 (1978).
- F. Wilczek, Problem of strong P𝑃Pitalic_P and T𝑇Titalic_T invariance in the presence of instantons, Phys. Rev. Lett. 40, 279 (1978).
- E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149, 351 (1984).
- M. Cicoli, M. D. Goodsell, and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP 2012 (10).
- J. P. Conlon, The QCD axion and moduli stabilisation, JHEP 2006 (05), 078, arXiv:hep-th/0602233 .
- P. Svrcek and E. Witten, Axions In String Theory, JHEP 2006 (06), 051, arXiv:hep-th/0605206 .
- J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the invisible axion, Physics Letters B 120, 127 (1983).
- L. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120, 133 (1983).
- M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120, 137 (1983).
- P. Sikivie, Experimental tests of the ”invisible” axion, Phys. Rev. Lett. 51, 1415 (1983).
- S. DePanfilis et al., Limits on the abundance and coupling of cosmic axions at 4.5<ma<5.04.5subscript𝑚𝑎5.04.5<{m}_{a}<5.04.5 < italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT < 5.0 μ𝜇\muitalic_μeV, Phys. Rev. Lett. 59, 839 (1987).
- C. Hagmann et al. (ADMX), Results from a high sensitivity search for cosmic axions, Phys. Rev. Lett. 80, 2043 (1998), arXiv:astro-ph/9801286 .
- S. J. Asztalos et al. (ADMX), Large scale microwave cavity search for dark matter axions, Phys. Rev. D 64, 092003 (2001).
- S. J. Asztalos et al. (ADMX), A SQUID-based microwave cavity search for dark-matter axions, Phys. Rev. Lett. 104, 041301 (2010), arXiv:0910.5914 [astro-ph.CO] .
- N. Du et al. (ADMX), A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment, Phys. Rev. Lett. 120, 151301 (2018), arXiv:1804.05750 [hep-ex] .
- T. Braine et al. (ADMX), Extended search for the invisible axion with the axion dark matter experiment, Physical Review Letters 124, 10.1103/physrevlett.124.101303 (2020).
- R. Bradley et al., Microwave cavity searches for dark-matter axions, Rev. Mod. Phys. 75, 777 (2003).
- S. J. Asztalos et al., Improved rf cavity search for halo axions, Phys. Rev. D 69, 011101 (2004).
- T. M. Shokair et al., Future directions in the microwave cavity search for dark matter axions, International Journal of Modern Physics A 29, 1443004 (2014).
- B. M. Brubaker et al. (HAYSTAC), First results from a microwave cavity axion search at 24 μeV24 𝜇eV24\text{ }\text{ }\mu\mathrm{eV}24 italic_μ roman_eV, Phys. Rev. Lett. 118, 061302 (2017).
- L. Zhong et al. (HAYSTAC), Results from phase 1 of the HAYSTAC microwave cavity axion experiment, Physical Review D 97, 10.1103/physrevd.97.092001 (2018).
- K. M. Backes et al. (HAYSTAC), A quantum enhanced search for dark matter axions, Nature 590, 238 (2021).
- B. T. McAllister et al., The ORGAN Experiment: An axion haloscope above 15 GHz (2017), arXiv:1706.00209 [physics.ins-det] .
- N. Crescini et al. (QUAX), Axion search with a quantum-limited ferromagnetic haloscope, Phys. Rev. Lett. 124, 171801 (2020), arXiv:2001.08940 [hep-ex] .
- A. Caldwell et al. (MADMAX Working Group), Dielectric Haloscopes: A New Way to Detect Axion Dark Matter, Phys. Rev. Lett. 118, 091801 (2017), arXiv:1611.05865 [physics.ins-det] .
- B. Majorovits et al. (MADMAX interest Group), MADMAX: A new road to axion dark matter detection, J. Phys. Conf. Ser. 1342, 012098 (2020), arXiv:1712.01062 [physics.ins-det] .
- M. Baryakhtar, J. Huang, and R. Lasenby, Axion and hidden photon dark matter detection with multilayer optical haloscopes, Phys. Rev. D 98, 035006 (2018).
- E. Arik et al. (CAST), Probing ev-scale axions with cast, Journal of Cosmology and Astroparticle Physics 2009 (02), 008–008.
- M. Arik et al. (CAST), New solar axion search using the cern axion solar telescope with He4superscriptHe4{}^{4}\mathrm{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He filling, Phys. Rev. D 92, 021101 (2015).
- V. Anastassopoulos et al. (CAST), New cast limit on the axion–photon interaction, Nature Physics 13, 584–590 (2017).
- R. Rabadán, A. Ringwald, and K. Sigurdson, Photon regeneration from pseudoscalars at x-ray laser facilities, Phys. Rev. Lett. 96, 110407 (2006).
- S. L. Adler, J. Gamboa, F. Méndez, and J. López-Sarrión, Axions and “light shining through a wall”: A detailed theoretical analysis, Annals of Physics 323, 2851–2872 (2008).
- D. Wouters and P. Brun, Constraints on Axion-like Particles from X-Ray Observations of the Hydra Galaxy Cluster, Astrophys. J. 772, 44 (2013), arXiv:1304.0989 [astro-ph.HE] .
- A. Abramowski et al. (H.E.S.S.), Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum, Phys. Rev. D 88, 102003 (2013), arXiv:1311.3148 [astro-ph.HE] .
- A. Payez et al., Revisiting the SN1987a gamma-ray limit on ultralight axion-like particles, Journal of Cosmology and Astroparticle Physics 2015 (02), 006.
- M. Ajello et al. (Fermi-LAT), Search for Spectral Irregularities due to Photon–Axionlike-Particle Oscillations with the Fermi Large Area Telescope, Phys. Rev. Lett. 116, 161101 (2016), arXiv:1603.06978 [astro-ph.HE] .
- C. Dessert, J. W. Foster, and B. R. Safdi, X-ray Searches for Axions from Super Star Clusters, Phys. Rev. Lett. 125, 261102 (2020), arXiv:2008.03305 [hep-ph] .
- C. Dessert, A. J. Long, and B. R. Safdi, No evidence for axions from chandra observation of the magnetic white dwarf RE j0317-853, Physical Review Letters 128, 10.1103/physrevlett.128.071102 (2022a).
- C. Dessert, D. Dunsky, and B. R. Safdi, Upper limit on the axion-photon coupling from magnetic white dwarf polarization, Physical Review D 105, 10.1103/physrevd.105.103034 (2022b).
- R. Janish and E. Pinetti, Hunting dark matter lines in the infrared background with the james webb space telescope (2023), arXiv:2310.15395 [hep-ph] .
- D. Wadekar and Z. Wang, Strong constraints on decay and annihilation of dark matter from heating of gas-rich dwarf galaxies, Phys. Rev. D 106, 075007 (2022), arXiv:2111.08025 [hep-ph] .
- M. J. Dolan, F. J. Hiskens, and R. R. Volkas, Advancing globular cluster constraints on the axion-photon coupling, JCAP 10 (10), 096, arXiv:2207.03102 [hep-ph] .
- G. Raffelt and L. Stodolsky, Mixing of the photon with low mass particles, Phys. Rev. D 37, 1237 (1988).
- M. S. Pshirkov and S. B. Popov, Conversion of Dark matter axions to photons in magnetospheres of neutron stars, J. Exp. Theor. Phys. 108, 384 (2009), arXiv:0711.1264 [astro-ph] .
- B. R. Safdi, Z. Sun, and A. Y. Chen, Detecting Axion Dark Matter with Radio Lines from Neutron Star Populations, Phys. Rev. D 99, 123021 (2019), arXiv:1811.01020 [astro-ph.CO] .
- J. W. Foster et al., Green Bank and Effelsberg Radio Telescope Searches for Axion Dark Matter Conversion in Neutron Star Magnetospheres, Phys. Rev. Lett. 125, 171301 (2020), arXiv:2004.00011 [astro-ph.CO] .
- A. Prabhu and N. M. Rapidis, Resonant conversion of dark matter oscillons in pulsar magnetospheres, Journal of Cosmology and Astroparticle Physics 2020 (10), 054.
- S. Nurmi, E. D. Schiappacasse, and T. T. Yanagida, Radio signatures from encounters between neutron stars and QCD-axion minihalos around primordial black holes, Journal of Cosmology and Astroparticle Physics 2021 (09), 004.
- J. I. McDonald and S. J. Witte, Generalized ray tracing for axions in astrophysical plasmas (2023), arXiv:2309.08655 [hep-ph] .
- J. Tjemsland, J. McDonald, and S. J. Witte, Adiabatic axion-photon mixing near neutron stars, Phys. Rev. D 109, 023015 (2024), arXiv:2310.18403 [hep-ph] .
- A. Prabhu, Axion production in pulsar magnetosphere gaps, Physical Review D 104, 10.1103/physrevd.104.055038 (2021).
- J. I. McDonald, B. Garbrecht, and P. Millington, Axion-photon conversion in 3d media and astrophysical plasmas (2023), arXiv:2307.11812 [hep-ph] .
- F. Wilczek, Two Applications of Axion Electrodynamics, Phys. Rev. Lett. 58, 1799 (1987).
- S. D. McDermott and S. J. Witte, Cosmological evolution of light dark photon dark matter, Phys. Rev. D 101, 063030 (2020), arXiv:1911.05086 [hep-ph] .
- E. Hardy and N. Song, Listening for dark photon radio signals from the Galactic Center, Phys. Rev. D 107, 115035 (2023), arXiv:2212.09756 [hep-ph] .
- P. Goldreich and W. H. Julian, Pulsar electrodynamics, Astrophys. J. 157, 869 (1969).
- P. A. Sturrock, A Model of Pulsars, ApJ 164, 529 (1971).
- D. Swanson, Plasma Waves, 2nd Edition, Series in Plasma Physics (Taylor & Francis, 2003).
- G. Sigl, Astrophysical Haloscopes, Phys. Rev. D 96, 103014 (2017), arXiv:1708.08908 [astro-ph.HE] .
- M. Gedalin, D. B. Melrose, and E. Gruman, Long waves in a relativistic pair plasma in a strong magnetic field, Phys. Rev. E 57, 3399 (1998).
- A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 3rd ed. (Artech House, Norwood, 2005).
- M. Malinen and P. Råback, Elmer finite element solver for multiphysics and multiscale problems (Forschungszentrum Jülich GmbH, 2013) pp. 101–113.
- R. Lee and A. Cangellaris, A study of discretization error in the finite element approximation of wave solutions, Antennas and Propagation, IEEE Transactions on 40, 542 (1992).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.