Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning How to Dynamically Decouple (2405.08689v2)

Published 14 May 2024 in quant-ph

Abstract: Current quantum computers suffer from noise that stems from interactions between the quantum system that constitutes the quantum device and its environment. These interactions can be suppressed through dynamical decoupling to reduce computational errors. However, the performance of dynamical decoupling depends on the type of the system-environment interactions that are present, which often lack an accurate model in quantum devices. We show that the performance of dynamical decoupling can be improved by optimizing its rotational gates to tailor them to the quantum hardware. We find that compared to canonical decoupling sequences, such as CPMG, XY4, and UR6, the optimized dynamical decoupling sequences yield the best performance in suppressing noise in superconducting qubits. Our work thus enhances existing error suppression methods which helps increase circuit depth and result quality on noisy hardware.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
  2. L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).
  3. N. Earnest, C. Tornow, and D. J. Egger, Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware, Phys. Rev. Res. 3, 043088 (2021).
  4. U. Haeberlen and J. S. Waugh, Coherent averaging effects in magnetic resonance, Phys. Rev. 175, 453 (1968).
  5. D. A. Lidar and T. A. Brun, Quantum error correction (Cambridge university press, 2013).
  6. G. S. Uhrig, Keeping a quantum bit alive by optimized π𝜋\piitalic_π-pulse sequences, Phys. Rev. Lett. 98, 100504 (2007).
  7. G. Quiroz and D. A. Lidar, Optimized dynamical decoupling via genetic algorithms, Phys. Rev. A 88, 052306 (2013).
  8. M. August and X. Ni, Using recurrent neural networks to optimize dynamical decoupling for quantum memory, Phys. Rev. A 95, 012335 (2017).
  9. L. Shirizly, G. Misguich, and H. Landa, Dissipative dynamics of graph-state stabilizers with superconducting qubits, Phys. Rev. Lett. 132, 010601 (2024).
  10. D. J. Egger and F. K. Wilhelm, Adaptive hybrid optimal quantum control for imprecisely characterized systems, Phys. Rev. Lett. 112, 240503 (2014).
  11. C. Tong, H. Zhang, and B. Pokharel, Empirical learning of dynamical decoupling on quantum processors (2024), arXiv:2403.02294 [quant-ph] .
  12. L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).
  13. A. J. Berglund, Quantum coherence and control in one- and two-photon optical systems (2000), arXiv:quant-ph/0010001 [quant-ph] .
  14. E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).
  15. H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94, 630 (1954).
  16. S. Meiboom and D. Gill, Modified spin-echo method for measuring nuclear relaxation times, Rev. Sci. Instrum. 29, 688 (1958).
  17. A. Maudsley, Modified Carr-Purcell-Meiboom-Gill sequence for NMR fourier imaging applications, J. Magn. Reson. 69, 488 (1986).
  18. S. H. Sack and D. J. Egger, Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation, Phys. Rev. Res. 6, 013223 (2024).
  19. D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390 (1999).
  20. K. Vogel and H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Phys. Rev. A 40, 2847 (1989).
  21. T. J. Dunn, I. A. Walmsley, and S. Mukamel, Experimental determination of the quantum-mechanical state of a molecular vibrational mode using fluorescence tomography, Phys. Rev. Lett. 74, 884 (1995).
  22. Z. Hradil, Quantum-state estimation, Phys. Rev. A 55, R1561 (1997).
  23. J. A. Smolin, J. M. Gambetta, and G. Smith, Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise, Phys. Rev. Lett. 108, 070502 (2012).
  24. J. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient approximation, IEEE Trans. Autom. Control 37, 332 (1992).
  25. J. Spall, Accelerated second-order stochastic optimization using only function measurements, in Proc. 36th IEEE Conf. Decis. Control, Vol. 2 (1997) pp. 1417–1424 vol.2.
  26. B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
  27. The numbers are as reported from the backends. Furthermore, ibm_torino implements two-qubit CZ gates with tunable couplers while ibm_sherbrooke uses the cross-resonance interaction.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube