Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Probabilistic Model Identification using Adaptive Recursive MCMC (2210.12595v2)

Published 23 Oct 2022 in cs.LG, cs.RO, math.ST, and stat.TH

Abstract: Although the Bayesian paradigm offers a formal framework for estimating the entire probability distribution over uncertain parameters, its online implementation can be challenging due to high computational costs. We suggest the Adaptive Recursive Markov Chain Monte Carlo (ARMCMC) method, which eliminates the shortcomings of conventional online techniques while computing the entire probability density function of model parameters. The limitations to Gaussian noise, the application to only linear in the parameters (LIP) systems, and the persistent excitation (PE) needs are some of these drawbacks. In ARMCMC, a temporal forgetting factor (TFF)-based variable jump distribution is proposed. The forgetting factor can be presented adaptively using the TFF in many dynamical systems as an alternative to a constant hyperparameter. By offering a trade-off between exploitation and exploration, the specific jump distribution has been optimised towards hybrid/multi-modal systems that permit inferences among modes. These trade-off are adjusted based on parameter evolution rate. We demonstrate that ARMCMC requires fewer samples than conventional MCMC methods to achieve the same precision and reliability. We demonstrate our approach using parameter estimation in a soft bending actuator and the Hunt-Crossley dynamic model, two challenging hybrid/multi-modal benchmarks. Additionally, we compare our method with recursive least squares and the particle filter, and show that our technique has significantly more accurate point estimates as well as a decrease in tracking error of the value of interest.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. C. M. Bishop, “Pattern recognition,” Machine Learning, vol. 128, 2006.
  2. F. Tobar, “Bayesian nonparametric spectral estimation,” in Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.   Curran Associates, Inc., 2018, pp. 10 127–10 137.
  3. P. Agand, M. Motaharifar, and H. D. Taghirad, “Teleoperation with uncertain environment and communication channel: An h⁢_⁢i⁢n⁢f⁢t⁢yℎ_𝑖𝑛𝑓𝑡𝑦h\_inftyitalic_h _ italic_i italic_n italic_f italic_t italic_y robust approach,” in 2017 Iranian Conference on Electrical Engineering (ICEE).   IEEE, 2017, pp. 685–690.
  4. P. Agand and M. A. Shoorehdeli, “Adaptive model learning of neural networks with uub stability for robot dynamic estimation,” in 2019 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2019, pp. 1–6.
  5. T. Kuśmierczyk, J. Sakaya, and A. Klami, “Variational bayesian decision-making for continuous utilities,” in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett, Eds.   Curran Associates, Inc., 2019, pp. 6392–6402.
  6. D. Joho, G. D. Tipaldi, N. Engelhard, C. Stachniss, and W. Burgard, “Nonparametric bayesian models for unsupervised scene analysis and reconstruction,” Robotics: Science and Systems VIII, p. 161, 2013.
  7. P. L. Green, “Bayesian system identification of a nonlinear dynamical system using a novel variant of simulated annealing,” Mechanical Systems and Signal Processing, vol. 52, pp. 133–146, 2015.
  8. A. Nori, C.-K. Hur, S. Rajamani, and S. Samuel, “R2: An efficient mcmc sampler for probabilistic programs,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1, 2014.
  9. T. Mandel, Y.-E. Liu, E. Brunskill, and Z. Popovic, “Efficient bayesian clustering for reinforcement learning.” in IJCAI, 2016, pp. 1830–1838.
  10. P. J. Green, “Reversible jump markov chain monte carlo computation and bayesian model determination,” Biometrika, vol. 82, no. 4, pp. 711–732, 1995.
  11. M. D. Hoffman, A. Gelman et al., “The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo.” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1593–1623, 2014.
  12. C.-S. Lin, “Frequency-domain approach for the parametric identification of structures with modal interference,” Journal of Mechanical Science and Technology, vol. 33, no. 9, pp. 4081–4091, 2019.
  13. P. Agand, M. Taherahmadi, A. Lim, and M. Chen, “Human navigational intent inference with probabilistic and optimal approaches,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 8562–8568.
  14. P. Agand, H. D. Taghirad, and A. Khaki-Sedigh, “Particle filters for non-gaussian hunt-crossley model of environment in bilateral teleoperation,” in 4th International Conference on Robotics and Mechatronics (ICROM).   IEEE, 2016, pp. 512–517.
  15. B. Yang, J. Wang, X. Zhang, T. Yu, W. Yao, H. Shu, F. Zeng, and L. Sun, “Comprehensive overview of meta-heuristic algorithm applications on pv cell parameter identification,” Energy Conversion and Management, vol. 208, p. 112595, 2020.
  16. S. H. Kim, E. Nam, T. I. Ha, S.-H. Hwang, J. H. Lee, S.-H. Park, and B.-K. Min, “Robotic machining: A review of recent progress,” International Journal of Precision Engineering and Manufacturing, vol. 20, no. 9, pp. 1629–1642, 2019.
  17. H. Yu, J. Li, Y. Ji, and M. Pecht, “Life-cycle parameter identification method of an electrochemical model for lithium-ion battery pack,” Journal of Energy Storage, vol. 47, p. 103591, 2022.
  18. P. Agand, M. A. Shoorehdeli, and M. Teshnehlab, “Transparent and flexible neural network structure for robot dynamics identification,” in 2016 24th Iranian Conference on Electrical Engineering (ICEE).   IEEE, 2016, pp. 1700–1705.
  19. E. H. Houssein, B. E.-d. Helmy, H. Rezk, and A. M. Nassef, “An enhanced archimedes optimization algorithm based on local escaping operator and orthogonal learning for pem fuel cell parameter identification,” Engineering Applications of Artificial Intelligence, vol. 103, p. 104309, 2021.
  20. K. A. Saar, F. Giardina, and F. Iida, “Model-free design optimization of a hopping robot and its comparison with a human designer,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1245–1251, 2018.
  21. B. Wang, A. Sekhon, and Y. Qi, “A fast and scalable joint estimator for integrating additional knowledge in learning multiple related sparse Gaussian graphical models,” in Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.   Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 5161–5170.
  22. T. Wang, Y. Zhang, Z. Chen, and S. Zhu, “Parameter identification and model-based nonlinear robust control of fluidic soft bending actuators,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 3, pp. 1346–1355, 2019.
  23. A. S. Carvalho and J. M. Martins, “Exact restitution and generalizations for the hunt–crossley contact model,” Mechanism and Machine Theory, vol. 139, pp. 174–194, 2019.
  24. A. Haddadi and K. Hashtrudi-Zaad, “Real-time identification of hunt-crossley dynamic models of contact environments,” IEEE transactions on robotics, vol. 28, no. 3, pp. 555–566, 2012.
  25. G. Williams, B. Goldfain, P. Drews, K. Saigol, J. Rehg, and E. A. Theodorou, “Robust sampling based model predictive control with sparse objective information,” in Robotics Science and Systems, 2018.
  26. S. Khatibisepehr, B. Huang, and S. Khare, “Design of inferential sensors in the process industry: A review of bayesian methods,” Journal of Process Control, vol. 23, no. 10, pp. 1575–1596, 2013.
  27. B. Ninness and S. Henriksen, “Bayesian system identification via markov chain monte carlo techniques,” Automatica, vol. 46, no. 1, pp. 40–51, 2010.
  28. B. Li, S. Luo, X. Qin, and L. Pan, “Improving gan with inverse cumulative distribution function for tabular data synthesis,” Neurocomputing, vol. 456, pp. 373–383, 2021.
  29. N. Kantas, A. Doucet, S. S. Singh, J. Maciejowski, and N. Chopin, “On particle methods for parameter estimation in state-space models,” Statistical science, vol. 30, no. 3, pp. 328–351, 2015.
  30. M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” Journal of the American statistical association, vol. 94, no. 446, pp. 590–599, 1999.
  31. K. Hunt and F. Crossley, “Coefficient of restitution interpreted as damping in vibroimpact,” Journal of applied mechanics, vol. 42, no. 2, pp. 440–445, 1975.
  32. N. Abolhassani, R. Patel, and M. Moallem, “Needle insertion into soft tissue: A survey,” Medical Engineering and Physics, vol. 29, no. 4, pp. 413–431, 2007.
Citations (4)

Summary

We haven't generated a summary for this paper yet.