Graph Neural Networks for Parameterized Quantum Circuits Expressibility Estimation (2405.08100v1)
Abstract: Parameterized quantum circuits (PQCs) are fundamental to quantum machine learning (QML), quantum optimization, and variational quantum algorithms (VQAs). The expressibility of PQCs is a measure that determines their capability to harness the full potential of the quantum state space. It is thus a crucial guidepost to know when selecting a particular PQC ansatz. However, the existing technique for expressibility computation through statistical estimation requires a large number of samples, which poses significant challenges due to time and computational resource constraints. This paper introduces a novel approach for expressibility estimation of PQCs using Graph Neural Networks (GNNs). We demonstrate the predictive power of our GNN model with a dataset consisting of 25,000 samples from the noiseless IBM QASM Simulator and 12,000 samples from three distinct noisy quantum backends. The model accurately estimates expressibility, with root mean square errors (RMSE) of 0.05 and 0.06 for the noiseless and noisy backends, respectively. We compare our model's predictions with reference circuits [Sim and others, QuTe'2019] and IBM Qiskit's hardware-efficient ansatz sets to further evaluate our model's performance. Our experimental evaluation in noiseless and noisy scenarios reveals a close alignment with ground truth expressibility values, highlighting the model's efficacy. Moreover, our model exhibits promising extrapolation capabilities, predicting expressibility values with low RMSE for out-of-range qubit circuits trained solely on only up to 5-qubit circuit sets. This work thus provides a reliable means of efficiently evaluating the expressibility of diverse PQCs on noiseless simulators and hardware.
- Deep neural networks for quantum circuit mapping. Neural Computing and Applications, 33(20):13723–13743, 2021. doi:10.1007/s00521-021-06009-3.
- Predicting Expressibility of Parameterized Quantum Circuits using Graph Neural Network. In Posters of the IEEE International Conference on Quantum Computing and Engineering QCE’23, pages 401–402, September 2023. arXiv:2309.06975, doi:10.1109/QCE57702.2023.10302.
- GNN4REL: Graph Neural Networks for Predicting Circuit Reliability Degradation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(11):3826–3837, 2022. arXiv:2208.02868, doi:10.1109/TCAD.2022.3197521.
- Quantum machine learning. Nature, 549(7671):195–202, 2017. arXiv:1611.09347, doi:10.1038/nature23474.
- Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021. arXiv:2012.09265, doi:10.1038/s42254-021-00348-9.
- Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature Communications, 12(1):1791, 2021. arXiv:2001.00550, doi:10.1038/s41467-021-21728-w.
- On the Expressibility and Overfitting of Quantum Circuit Learning. ACM Transactions on Quantum Computing, 2(2):8:1–8:24, 2021. doi:10.1145/3466797.
- Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation. Journal of the Physical Society of Japan, 90(3):032001, 2021. arXiv:2011.01382, doi:10.7566/JPSJ.90.032001.
- Optimizing quantum circuit placement via machine learning. In 59th ACM/IEEE Design Automation Conference DAC’22, pages 19–24, 2022. doi:10.1145/3489517.3530403.
- A Quantum Approximate Optimization Algorithm. arXiv preprint, 2014. arXiv:1411.4028.
- Quantum circuit optimization with deep reinforcement learning. arXiv preprint, 2021. arXiv:2103.07585.
- An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nature Communications, 10(1):3007, 2019. arXiv:1812.11173, doi:10.1038/s41467-019-10988-2.
- QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Scientific Reports, 9(1):6903, 2019. arXiv:1812.07589, doi:10.1038/s41598-019-43176-9.
- Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus. PRX Quantum, 3(1):010313, 2022. arXiv:2101.02138, doi:10.1103/PRXQuantum.3.010313.
- Evaluation of Parameterized Quantum Circuits: On the Relation Between Classification Accuracy, Expressibility, and Entangling Capability. Quantum Machine Intelligence, 3:9:1–9:19, 2021. arXiv:2003.09887, doi:10.1007/s42484-021-00038-w.
- Virtual Distillation for Quantum Error Mitigation. Physical Review X, 11:041036, Nov 2021. arXiv:2011.07064, doi:10.1103/PhysRevX.11.041036.
- S. K. Jeswal and S. Chakraverty. Recent developments and applications in quantum neural network: A review. Archives of Computational Methods in Engineering, 26(4):793–807, 2019. doi:10.1007/s11831-018-9269-0.
- James M. Joyce. Kullback-Leibler Divergence. In International Encyclopedia of Statistical Science, pages 720–722. Springer Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-04898-2_327.
- Richard Jozsa. Fidelity for Mixed Quantum States. Journal of Modern Optics, 41(12):2315–2323, 1994. doi:10.1080/09500349414552171.
- Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549:242–246, 2017. arXiv:1704.05018, doi:10.1038/nature23879.
- Continuous-variable quantum neural networks. Physical Review Research, 1(3):033063, 2019. arXiv:1806.06871, doi:10.1103/PhysRevResearch.1.033063.
- Quantum Error Mitigation With Artificial Neural Network. IEEE Access, 8:188853–188860, 2020. doi:10.1109/ACCESS.2020.3031607.
- Overfitting in quantum machine learning and entangling dropout. Quantum Machine Intelligence, 4(2):30:1–30:9, 2022. arXiv:2205.11446, doi:10.1007/s42484-022-00087-9.
- Machine-Learning-Based Qubit Allocation for Error Reduction in Quantum Circuits. IEEE Transactions on Quantum Engineering, 4:1–14, 2023. doi:10.1109/TQE.2023.3301899.
- Machine Learning for Practical Quantum Error Mitigation. arXiv preprint, 2023. arXiv:2309.17368.
- Ji Liu and Huiyang Zhou. Reliability Modeling of NISQ- Era Quantum Computers. In IEEE International Symposium on Workload Characterization IISWC’20, pages 94–105, 2020. doi:10.1109/IISWC50251.2020.00018.
- Barren plateaus in quantum neural network training landscapes. Nature Communications, 9(1):4812, 2018. arXiv:1803.11173, doi:10.1038/s41467-018-07090-4.
- The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, 2016. arXiv:1509.04279, doi:10.1088/1367-2630/18/2/023023.
- Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology, 3(3):030503, 2018. arXiv:1710.01022, doi:10.1088/2058-9565/aab822.
- Expressibility of the alternating layered ansatz for quantum computation. Quantum, 5:434, 2021. arXiv:2005.12537, doi:10.22331/q-2021-04-19-434.
- Machine Learning Optimization of Quantum Circuit Layouts. ACM Transactions on Quantum Computing, 4(2):1–25, 2023. arXiv:2007.14608, doi:10.1145/3565271.
- A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5:4213, 2014. arXiv:1304.3061, doi:10.1038/ncomms5213.
- John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018. arXiv:1801.00862, doi:10.22331/q-2018-08-06-79.
- Qiskit Development Team. RealAmplitudes. https://qiskit.org/documentation/stubs/qiskit.circuit.library.RealAmplitudes.html, 2023.
- Compiler Optimization for Quantum Computing Using Reinforcement Learning. In 60th ACM/IEEE Design Automation Conference DAC’23, pages 1–6, 2023. arXiv:2212.04508, doi:10.1109/DAC56929.2023.10248002.
- Quantum autoencoders for efficient compression of quantum data. Quantum Science and Technology, 2(4):045001, 2017. arXiv:1612.02806, doi:10.1088/2058-9565/aa8072.
- The Effect of Noise on the Performance of Variational Algorithms for Quantum Chemistry. In IEEE International Conference on Quantum Computing and Engineering QCE’21, pages 42–53, 2021. arXiv:2108.12388, doi:10.1109/QCE52317.2021.00020.
- Data-Driven Reliability Models of Quantum Circuit: From Traditional ML to Graph Neural Network. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(5):1477–1489, 2023. doi:10.1109/TCAD.2022.3202430.
- SSQEM: Semi-Supervised Quantum Error Mitigation. In 7th International Conference on Computer Science and Engineering (UBMK), pages 474–478, 2022. doi:10.1109/UBMK55850.2022.9919474.
- The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008. doi:10.1109/TNN.2008.2005605.
- Circuit-centric quantum classifiers. Physical Review A, 101(3):032308, 2020. arXiv:1804.00633, doi:10.1103/PhysRevA.101.032308.
- Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification. In 30th International Joint Conference on Artificial Intelligence IJCAI’21, pages 1548–1554, 2020. arXiv:2009.03509, doi:10.24963/ijcai.2021/214.
- Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019. arXiv:1905.10876, doi:10.1002/qute.201900070.
- Learning-Based Quantum Error Mitigation. PRX Quantum, 2(4):040330, 2021. arXiv:2005.07601, doi:10.1103/PRXQuantum.2.040330.
- Expressibility and trainability of parametrized analog quantum systems for machine learning applications. Physical Review Research, 2(4):043364, 2020. arXiv:2005.11222, doi:10.1103/PhysRevResearch.2.043364.
- Error mitigation for short-depth quantum circuits. Physical Review Letters, 119:180509, Nov 2017. doi:10.1103/PhysRevLett.119.180509.
- TorchQuantum Case Study for Robust Quantum Circuits. In 41st IEEE/ACM International Conference on Computer-Aided Design ICCAD’22, pages 136:1–136:9, 2022. doi:10.1145/3508352.3561118.
- Statistical Methods for Quantum State Verification and Fidelity Estimation. Advanced Quantum Technologies, 5(5):2100126, 2022. arXiv:2109.10805, doi:10.1002/qute.202100126.
- Direct Fidelity Estimation of Quantum States using Machine Learning. Physical Review Letters, 127(13):130503, 2021. arXiv:2102.02369, doi:10.1103/PhysRevLett.127.130503.
- Topological Quantum Compiling with Reinforcement Learning. Physical Review Letters, 125(17):170501, 2020. arXiv:2004.04743, doi:10.1103/PhysRevLett.125.170501.
- A deep learning model for noise prediction on near-term quantum devices. arXiv preprint, 2020. arXiv:2005.10811.
- Average fidelity between random quantum states. Physical Review A, 71:032313, 2005. arXiv:quant-ph/0311117, doi:10.1103/PhysRevA.71.032313.