Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Expressive Power of Parameterized Quantum Circuits (1810.11922v1)

Published 29 Oct 2018 in quant-ph and cs.LG

Abstract: Parameterized quantum circuits (PQCs) have been broadly used as a hybrid quantum-classical machine learning scheme to accomplish generative tasks. However, whether PQCs have better expressive power than classical generative neural networks, such as restricted or deep Boltzmann machines, remains an open issue. In this paper, we prove that PQCs with a simple structure already outperform any classical neural network for generative tasks, unless the polynomial hierarchy collapses. Our proof builds on known results from tensor networks and quantum circuits (in particular, instantaneous quantum polynomial circuits). In addition, PQCs equipped with ancillary qubits for post-selection have even stronger expressive power than those without post-selection. We employ them as an application for Bayesian learning, since it is possible to learn prior probabilities rather than assuming they are known. We expect that it will find many more applications in semi-supervised learning where prior distributions are normally assumed to be unknown. Lastly, we conduct several numerical experiments using the Rigetti Forest platform to demonstrate the performance of the proposed Bayesian quantum circuit.

Citations (92)

Summary

We haven't generated a summary for this paper yet.