Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Quantised helicity in optical media (2405.08086v1)

Published 13 May 2024 in physics.optics and quant-ph

Abstract: Optical helicity quantifies the handedness of light, and plays a central role in the description of interactions between light and chiral matter. In free space, it is related to the duality symmetry of the electromagnetic field, a continuous symmetry encapsulating the invariance of Maxwell's equations under the interchange of electric and magnetic fields. However, in materials the situation is not so straightforward, as the free space transformation must be extended to encompass mixing of both the $\mathbf{E}$/$\mathbf{H}$ and $\mathbf{D}$/$\mathbf{B}$ field pairs. The simultaneous direct interchange of $\mathbf{E}$/$\mathbf{H}$ and of $\mathbf{D}$/$\mathbf{B}$ is incompatible with the presence of linear constitutive relations. In this work, we extend the duality transform in a way that resolves this incompatibility, and use this to define the optical helicity in a general medium, which may be dispersive, lossy, chiral or nonreciprocal. We find that the helicity density must contain an explicit contribution associated with the polarisation and magnetisation of the matter, and we show that the form of this matter contribution is independent of the details of the medium. We also show that the in-medium helicity can be naturally expressed in terms of the elementary quantised excitations of the system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, 1995).
  2. M. Srednicki, Quantum Field Theory (Cambridge University Press, 2007).
  3. M. Born and E. Wolf, Principes of Optics 7th ed. (Cambridge University Press, 1999).
  4. D. P. Craig and T. Thirunamachandran, Molecular quantum electrodynamics (Dover, 1998).
  5. L. D. Barron, Molecular light scattering and optical activity (Cambridge University Press, 2004).
  6. R. P. Cameron, S. M. Barnett, and A. M. Yao, New Journal of Physics 16, 013020 (2014).
  7. N. Kravets, A. Aleksanyan, and E. Brasselet, Physical Review Letters 122, 024301 (2019).
  8. O. Heaviside, Philosophical Transactions of the Royal Society A 183, 423 (1892).
  9. J. Larmor, Philosophical Transactions of the Royal Society A 190, 205 (1897).
  10. H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-motion on the Basis of Maxwell’s Equations (University press, 1915).
  11. J. A. Stratton, Electromagnetic theory (McGraw-Hill Book Company, 1941).
  12. S. M. Barnett, R. P. Cameron, and A. M. Yao, Physical Review A 86, 013845 (2012).
  13. G. Nienhuis, Physcal Review A 93, 023840 (2016).
  14. M. E. Rose, Multipole Fields (Wiley, 1955) Chap. 1.5.
  15. J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1998) Chap. 6.
  16. S. M. Barnett and R. Loudon, New Journal of Physics 17, 063027 (2015).
  17. K. Van Kruining and J. B. Götte, Journal of Optics 18, 085601 (2016).
  18. J. J. Hopfield, Phys. Rev. 112, 1555 (1958).
  19. B. Huttner, J. J. Baumberg, and S. M. Barnett, Europhysics Letters (EPL) 16, 177 (1991).
  20. Please see supplemental information at this url.
  21. J. L. Trueba and A. F. Rañada, European Journal of Physics 17, 141 (1996).
  22. B. Huttner and S. M. Barnett, Europhysics Letters (EPL) 18, 487 (1992a).
  23. N. A. R. Baht and J. E. Sipe, Physical Review A 73, 063808 (2006).
  24. B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992b).
  25. T. G. Philbin, New Journal of Physics 12, 123008 (2010).
  26. S. Scheel and S. Y. Buhmann, Acta Physica Slovaca 58, 675 (2008).
  27. S. A. R. Horsely, Physical Review A 84, 063822 (2011).
  28. E. Noether, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918, 235 (1918).
  29. D. E. Neuenschwander, Emmy Noether’s Wonderful Theorem (Johns Hopkins University Press, 2010).
  30. M. Bañados and I. Reyes, International Journal of Modern Physics D 25, 1630021 (2016).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com