Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Timely Offloading in Mobile Edge Cloud Systems (2405.07274v1)

Published 12 May 2024 in eess.SY and cs.SY

Abstract: Future real-time applications like smart cities will use complex Machine Learning (ML) models for a variety of tasks. Timely status information is required for these applications to be reliable. Offloading computation to a mobile edge cloud (MEC) can reduce the completion time of these tasks. However, using the MEC may come at a cost such as related to use of a cloud service or privacy. In this paper, we consider a source that generates time-stamped status updates for delivery to a monitor after processing by the mobile device or MEC. We study how a scheduler must forward these updates to achieve timely updates at the monitor but also limit MEC usage. We measure timeliness at the monitor using the age of information (AoI) metric. We formulate this problem as an infinite horizon Markov decision process (MDP) with an average cost criterion. We prove that an optimal scheduling policy has an age-threshold structure that depends on how long an update has been in service.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J.-S. Oh, “Semisupervised deep reinforcement learning in support of iot and smart city services,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 624–635, 2018.
  2. A. I. Maqueda, A. Loquercio, G. Gallego, N. García, and D. Scaramuzza, “Event-based vision meets deep learning on steering prediction for self-driving cars,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 5419–5427.
  3. R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for healthcare: review, opportunities and challenges,” Briefings in bioinformatics, vol. 19, no. 6, pp. 1236–1246, 2018.
  4. V. Nasir and F. Sassani, “A review on deep learning in machining and tool monitoring: Methods, opportunities, and challenges,” The International Journal of Advanced Manufacturing Technology, vol. 115, no. 9, pp. 2683–2709, 2021.
  5. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in 2012 Proceedings IEEE INFOCOM.   IEEE, 2012, pp. 2731–2735.
  6. I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information in wireless networks with throughput constraints,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications.   IEEE, 2018, pp. 1844–1852.
  7. Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates of multiple information flows,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).   IEEE, 2018, pp. 136–141.
  8. Y.-P. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for minimizing age of information in wireless broadcast networks with random arrivals,” IEEE Transactions on Mobile Computing, vol. 19, no. 12, pp. 2903–2915, 2020.
  9. Y.-P. Hsu, “Age of information: Whittle index for scheduling stochastic arrivals,” in 2018 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2018, pp. 2634–2638.
  10. E. T. Ceran, D. Gündüz, and A. György, “Average age of information with hybrid arq under a resource constraint,” IEEE Transactions on Wireless Communications, vol. 18, no. 3, pp. 1900–1913, 2019.
  11. H. Tang, J. Wang, L. Song, and J. Song, “Minimizing age of information with power constraints: Multi-user opportunistic scheduling in multi-state time-varying channels,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 5, pp. 854–868, 2020.
  12. A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Optimal sampling and scheduling for timely status updates in multi-source networks,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 4019–4034, 2021.
  13. X. He, J. Liu, R. Jin, and H. Dai, “Privacy-aware offloading in mobile-edge computing,” in GLOBECOM 2017-2017 IEEE Global Communications Conference.   IEEE, 2017, pp. 1–6.
  14. M. Min, X. Wan, L. Xiao, Y. Chen, M. Xia, D. Wu, and H. Dai, “Learning-based privacy-aware offloading for healthcare iot with energy harvesting,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4307–4316, 2018.
  15. Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for mobile-edge computing with energy harvesting devices,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–3605, 2016.
  16. J. Xu and S. Ren, “Online learning for offloading and autoscaling in renewable-powered mobile edge computing,” in 2016 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2016, pp. 1–6.
  17. R. D. Yates, “Lazy is timely: Status updates by an energy harvesting source,” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 3008–3012.
  18. B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of information under energy replenishment constraints,” in 2015 Information Theory and Applications Workshop (ITA), 2015, pp. 25–31.
  19. X. Wu, J. Yang, and J. Wu, “Optimal status update for age of information minimization with an energy harvesting source,” IEEE Transactions on Green Communications and Networking, vol. 2, no. 1, pp. 193–204, 2018.
  20. S. Feng and J. Yang, “Age of information minimization for an energy harvesting source with updating erasures: Without and with feedback,” IEEE Transactions on Communications, vol. 69, no. 8, pp. 5091–5105, 2021.
  21. M. A. Abd-Elmagid, H. S. Dhillon, and N. Pappas, “Aoi-optimal joint sampling and updating for wireless powered communication systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 14 110–14 115, 2020.
  22. G. Stamatakis, N. Pappas, and A. Traganitis, “Control of status updates for energy harvesting devices that monitor processes with alarms,” in 2019 IEEE Globecom Workshops (GC Wkshps).   IEEE, 2019, pp. 1–6.
  23. M. L. Puterman, “Markov decision processes: Discrete stochastic dynamic programming,” 1994.
  24. L. I. Sennott, “Average cost optimal stationary policies in infinite state markov decision processes with unbounded costs,” Operations Research, vol. 37, no. 4, pp. 626–633, 1989.
  25. Y.-P. Hsu, E. Modiano, and L. Duan, “Age of information: Design and analysis of optimal scheduling algorithms,” in 2017 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2017, pp. 561–565.
Citations (2)

Summary

We haven't generated a summary for this paper yet.