Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Peak Age of Information in MEC Systems: Computing Preemption and Non-preemption (2404.02700v1)

Published 3 Apr 2024 in cs.IT and math.IT

Abstract: The freshness of information in real-time monitoring systems has received increasing attention, with Age of Information (AoI) emerging as a novel metric for measuring information freshness. In many applications, update packets need to be computed before being delivered to a destination. Mobile edge computing (MEC) is a promising approach for efficiently accomplishing the computing process, where the transmission process and computation process are coupled, jointly affecting freshness. In this paper, we aim to minimize the average peak AoI (PAoI) in an MEC system. We consider the generate-at-will source model and study when to generate a new update in two edge server setups: 1) computing preemption, where the packet in the computing process will be preempted by the newly arrived one, and 2) non-preemption, where the newly arrived packet will wait in the queue until the current one completes computing. We prove that the fixed threshold policy is optimal in a non-preemptive system for arbitrary transmission time and computation time distributions. In a preemptive system, we show that the transmission-aware threshold policy is optimal when the computing time follows an exponential distribution. Our numerical simulation results not only validate the theoretical findings but also demonstrate that: 1) in our problem, preemptive systems are not always superior to non-preemptive systems, even with exponential distribution, and 2) as the ratio of the mean transmission time to the mean computation time increases, the optimal threshold increases in preemptive systems but decreases in non-preemptive systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Y. Mao, C. You, J. Zhang, K. Huang, and K. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.
  2. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things: A survey on enabling technologies, protocols, and applications,” IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.
  3. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in 2012 Proceedings IEEE INFOCOM.   IEEE, 2012, pp. 2731–2735.
  4. S. K. Kaul, R. D. Yates, and M. Gruteser, “Status updates through queues,” in 2012 46th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, March 2012, pp. 1–6.
  5. R. Yates and S. Kaul, “Real-time status updating: Multiple sources,” in 2012 IEEE International Symposium on Information Theory Proceedings.   IEEE, 2012, pp. 2666–2670.
  6. B. Bacinoglu, E. Ceran, and E. Uysal-Biyikoglu, “Age of information under energy replenishment constraints,” in 2015 Information Theory and Applications Workshop (ITA).   IEEE, 2015, pp. 25–31.
  7. L. Huang and E. Modiano, “Optimizing age-of-information in a multiclass queueing system,” in 2015 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2015, pp. 1681–1685.
  8. A. Bedewy, Y. Sun, and N. Shroff, “The age of information in multihop networks,” IEEE/ACM Transactions on Networking, vol. 27, no. 3, pp. 1248–1257, 2019.
  9. R. D. Yates and S. K. Kaul, “The age of information: Real-time status updating by multiple sources,” IEEE Transactions on Information Theory, vol. 65, no. 3, pp. 1807–1827, March 2019.
  10. Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff, “Update or wait: How to keep your data fresh,” IEEE Transactions on Information Theory, vol. 63, no. 11, pp. 7492–7508, Nov. 2017.
  11. A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Age-minimal transmission for energy harvesting sensors with finite batteries: Online policies,” IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 534–556, Jan 2020.
  12. Y. Gu, Q. Wang, H. Chen, Y. Li, and B. Vucetic, “Optimizing information freshness in two-hop status update systems under a resource constraint,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1380–1392, May 2021.
  13. J. P. Champati, R. R. Avula, T. J. Oechtering, and J. Gross, “Minimum achievable peak age of information under service preemptions and request delay,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1365–1379, May 2021.
  14. J. Gong, J. Zhu, X. Chen, and X. Ma, “Sleep, sense or transmit: Energy-age tradeoff for status update with two-threshold optimal policy,” IEEE Transactions on Wireless Communications, vol. 21, no. 3, pp. 1751–1765, March 2022.
  15. A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Timely status updating over erasure channels using an energy harvesting sensor: Single and multiple sources,” IEEE Transactions on Green Communications and Networking, vol. 6, no. 1, pp. 6–19, Mar 2022.
  16. A. Alabbasi and V. Aggarwal, “Joint information freshness and completion time optimization for vehicular networks,” IEEE Transactions on Services Computing, vol. 15, no. 2, pp. 1118–1129, 2022.
  17. A. Arafa, R. D. Yates, and H. V. Poor, “Timely cloud computing: Preemption and waiting,” in 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2019, pp. 528–535.
  18. P. Zou, O. Ozel, and S. Subramaniam, “Optimizing information freshness through computation–transmission tradeoff and queue management in edge computing,” IEEE/ACM Transactions on Networking, vol. 29, no. 2, pp. 949–963, Apr. 2021.
  19. Q. Kuang, J. Gong, X. Chen, and X. Ma, “Analysis on computation-intensive status update in mobile edge computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4353–4366, 2020.
  20. J. Gong, Q. Kuang, X. Chen, and X. Ma, “Reducing age-of-information for computation-intensive messages via packet replacement,” in The 11th Int. Conf. Wireless Commun. Signal Processing (WCSP), Oct. 2019.
  21. J. Zhong, W. Zhang, R. D. Yates, A. Garnaev, and Y. Zhang, “Age-aware scheduling for asynchronous arriving jobs in edge applications,” in Proc. IEEE Infocom, May 2019.
  22. X. Song, X. Qin, Y. Tao, B. Liu, and P. Zhang, “Age based task scheduling and computation offloading in mobile-edge computing systems,” in 2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW), 2019, pp. 1–6.
  23. R. Li, Q. Ma, J. Gong, Z. Zhou, and X. Chen, “Age of processing: Age-driven status sampling and processing offloading for edge-computing-enabled real-time iot applications,” IEEE Internet of Things Journal, vol. 8, no. 19, pp. 14 471–14 484, 2021.
  24. J. Zhu and J. Gong, “Online scheduling of transmission and processing for aoi minimization with edge computing,” in IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2022, pp. 1–6.
  25. M. Costa, M. Codreanu, and A. Ephremides, “Age of information with packet management,” in 2014 IEEE International Symposium on Information Theory, 2014, pp. 1583–1587.
  26. ——, “On the age of information in status update systems with packet management,” IEEE Transactions on Information Theory, vol. 62, no. 4, pp. 1897–1910, Apr. 2016.
  27. M. A. Abd-Elmagid and H. S. Dhillon, “Average peak age-of-information minimization in uav-assisted iot networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 2003–2008, 2019.
  28. Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka, “A general formula for the stationary distribution of the age of information and its application to single-server queues,” IEEE Transactions on Information Theory, vol. 65, no. 12, pp. 8305–8324, 2019.
  29. E. Najm and E. Telatar, “Status updates in a multi-stream m/g/1/1 preemptive queue,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2018, pp. 124–129.
  30. A. M. Bedewy, Y. Sun, R. Singh, and N. B. Shroff, “Low-power status updates via sleep-wake scheduling,” IEEE/ACM Transactions on Networking, vol. 29, no. 5, pp. 2129–2141, 2021.
  31. L. Yang, F.-C. Zheng, and S. Jin, “Edge caching with real-time guarantees,” in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), 2022, pp. 1–6.
  32. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, May 2021.
  33. W. Dinkelbach, “On nonlinear fractional programming,” Management Science, vol. 13, no. 7, pp. 492–498, Mar 1967.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com