Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A complete pair of solvents of a quadratic matrix pencil (2405.07210v1)

Published 12 May 2024 in math.NA, cs.NA, math.DS, math.FA, and math.SP

Abstract: Let $B$ and $C$ be square complex matrices. The differential equation \begin{equation*} x''(t)+Bx'(t)+Cx(t)=f(t) \end{equation*} is considered. A solvent is a matrix solution $X$ of the equation $X2+BX+C=\mathbf0$. A pair of solvents $X$ and $Z$ is called complete if the matrix $X-Z$ is invertible. Knowing a complete pair of solvents $X$ and $Z$ allows us to reduce the solution of the initial value problem to the calculation of two matrix exponentials $e{Xt}$ and $e{Zt}$. The problem of finding a complete pair $X$ and $Z$, which leads to small rounding errors in solving the differential equation, is discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. G. J. Davis. Numerical solution of a quadratic matrix equation. SIAM J. Sci. Statist. Comput., 2(2):164–175, 1981.
  2. R. J. Duffin. The Rayleigh-Ritz method for dissipative or gyroscopic systems. Quart. Appl. Math., 18:215–221, 1960/61.
  3. F. R. Gantmacher. The theory of matrices, volume 1. AMS Chelsea Publishing, Providence, RI, 1959.
  4. Matrix polynomials. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. Computer Science and Applied Mathematics.
  5. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.
  6. C.-H. Guo. Numerical solution of a quadratic eigenvalue problem. Linear Algebra Appl., 385:391–406, 2004.
  7. Detecting and solving hyperbolic quadratic eigenvalue problems. SIAM J. Matrix Anal. Appl., 30(4):1593–1613, 2008/09.
  8. N. J. Higham. Stable iterations for the matrix square root. Numer. Algorithms, 15(2):227–242, 1997.
  9. N. J. Higham. Functions of matrices: theory and computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
  10. Numerical analysis of a quadratic matrix equation. IMA J. Numer. Anal., 20(4):499–519, 2000.
  11. Solving a quadratric matrix equation by Newton’s method with exact line searches. SIAM J. Matrix Anal. Appl., 23(2):303–316 (electronic), 2001.
  12. M. V. Keldysh. On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations. Doklady Akad. Nauk SSSR (N. S.), 77(1):11–14, 1951. (in Russian).
  13. M. V. Keldysh. The completeness of eigenfunctions of certain classes of nonselfadjoint linear operators. Uspehi Mat. Nauk, 26(4(160)):15–41, 1971. (in Russian); English translation in Russian Math. Surveys, 26(4):15–44 (1971).
  14. I. D. Kostrub. Hamilton–Cayley theorem and the representation of the resolvent. Funktsional. Anal. i Prilozhen., 57(4):130–132, 2023. (in Russian).
  15. M. G. Kreĭn and H. Langer. On some mathematical principles in the linear theory of damped oscillations of continua. I. Integral Equations Operator Theory, 1(3):364–399, 1978.
  16. M. G. Kreĭn and H. Langer. On some mathematical principles in the linear theory of damped oscillations of continua. II. Integral Equations Operator Theory, 1(4):539–566, 1978.
  17. I. V. Kurbatova. Functional calculus generated by a quadratic pencil. Zap. Nauchn. Sem. POMI, 389:113–130, 2011. (in Russian); English translation in J. Math. Sci., 182 (2012), no. 5, 646–655.
  18. P. Lancaster. Lambda-matrices and vibrating systems, volume 94 of International Series of Monographs in Pure and Applied Mathematics. Pergamon Press, Oxford-New York-Paris, 1966.
  19. P. Lancaster. Strongly stable gyroscopic systems. Electron. J. Linear Algebra, 5:53–66, 1999.
  20. H. Langer. Über stark gedämpfte Scharen im Hilbertraum. J. Math. Mech., 17:685–705, 1967/68.
  21. H. Langer. Factorization of operator pencils. Acta Sci. Math. (Szeged), 38(1-2):83–96, 1976.
  22. A. S. Markus. Introduction to the spectral theory of polynomial operator pencils, volume 71 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1988.
  23. V. Mehrmann and D. Watkins. Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput., 22(6):1905–1925, 2000.
  24. Applied algebra and functional analysis. Dover Publications, Inc., New York, 1993.
  25. M. A. Naĭmark. Normed algebras. Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics. Wolters-Noordhoff Publishing, Groningen, third edition, 1972.
  26. Differentail equations in Banach algebras. Dokl. Akad. Nauk, 491(1):73–77, 2020.
  27. On differential equations in Banach algebras. VGU Publishing House, Voronezh, 2020. (in Russian).
  28. W. Rudin. Functional analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, first edition, 1973.
  29. G. E. Shilov. Linear algebra. Dover Publications, Inc., New York, English edition, 1977.
  30. A. A. Shkalikov. Strongly damped operator pencils and the solvability of the corresponding operator-differential equations. Mat. Sb. (N.S.), 135(177)(1):96–118, 1988. (in Russian); English translation in Math. USSR-Sb., 63(1):97–119, 1992.
  31. A. A. Shkalikov. Operator pencils arising in elasticity and hydrodynamics: The instability index formula. In I. Gohberg, P. Lancaster, and P. N. Shivakumar, editors, Recent Developments in Operator Theory and Its Applications, pages 358–385, Basel, 1996. Birkhäuser Basel.
  32. A. A. Shkalikov. Factorization of elliptic pencils and the Mandelstam hypothesis. In Contributions to operator theory in spaces with an indefinite metric (Vienna, 1995), volume 106 of Oper. Theory Adv. Appl., pages 355–387. Birkhäuser, Basel, 1998.
  33. Compact perturbations of strongly damped operator pencils. Math. Notes, 45(2):167–174, 1989.
  34. F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev., 43(2):235–286, 2001.
  35. A computer-aided method for solvents and spectral factors of matrix polynomials. Applied mathematics and computation, 47(2-3):211–235, 1992.
  36. Ch. F. Van Loan. The sensitivity of the matrix exponential. SIAM J. Numer. Anal., 14(6):971–981, 1977.
  37. S. Wolfram. The Mathematica book. Wolfram Media, New York, fifth edition, 2003.
  38. Linear differential equations with periodic coefficients. 1, 2. Halsted Press [John Wiley & Sons], New York–Toronto, 1975.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com