Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-rank tensor structure preservation in fractional operators by means of exponential sums (2208.05189v1)

Published 10 Aug 2022 in math.NA and cs.NA

Abstract: The use of fractional differential equations is a key tool in modeling non-local phenomena. Often, an efficient scheme for solving a linear system involving the discretization of a fractional operator is evaluating the matrix function $x = \mathcal A{-\alpha} c$, where $\mathcal A$ is a discretization of the classical Laplacian, and $\alpha$ a fractional exponent between $0$ and $1$. In this work, we derive an exponential sum approximation for $f(z) =z{-\alpha}$ that is accurate over $[1, \infty)$ and allows to efficiently approximate the action of bounded and unbounded operators of this kind on tensors stored in a variety of low-rank formats (CP, TT, Tucker). The results are relevant from a theoretical perspective as well, as they predict the low-rank approximability of the solutions of these linear systems in low-rank tensor formats.

Citations (1)

Summary

We haven't generated a summary for this paper yet.