Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coherent Design of Wind Turbine Controllers Considering Transitions between Operating Regions using Fuzzy Membership Functions (2405.06817v1)

Published 10 May 2024 in eess.SY and cs.SY

Abstract: This paper presents a coherent design of wind turbine controllers with explicit consideration of transitions between operating regions by fuzzy membership functions. In improving the design process of wind turbines, the transitions between partial-load operation by torque control and full-load operation by pitch control need to be systematically considered. From the first view, fuzzy methods for blending separately designed control laws are an obvious choice. However, valid design rules must be developed to ensure stability and performance during the transition. A model-based control design procedure in the Takagi-Sugeno fuzzy framework using the sector nonlinearity method is proposed to achieve the above control design objectives. In addition to a detailed mathematical analysis of the design, the method's applicability is verified by simulation studies using a high-fidelity reference wind turbine model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. G. A. M. van Kuik, J. Peinke, R. Nijssen, D. Lekou, J. Mann, J. N. Sørensen, C. Ferreira, J. W. van Wingerden, D. Schlipf, P. Gebraad, H. Polinder, A. Abrahamsen, G. J. W. van Bussel, J. D. Sørensen, P. Tavner, C. L. Bottasso, M. Muskulus, D. Matha, H. J. Lindeboom, S. Degraer, O. Kramer, S. Lehnhoff, M. Sonnenschein, P. E. Sørensen, R. W. Künneke, P. E. Morthorst, and K. Skytte, “Long-term research challenges in wind energy – a research agenda by the european academy of wind energy,” Wind Energy Science, vol. 1, no. 1, pp. 1–39, 2016. [Online]. Available: https://wes.copernicus.org/articles/1/1/2016/
  2. E. A. Bossanyi, “Wind turbine control for load reduction,” Wind Energy, vol. 6, no. 3, p. 229–244, 2003.
  3. D. Schlipf and P. W. Cheng, “Adaptive Vorsteuerung für Windenergieanlagen,” at - Automatisierungstechnik, vol. 66, no. 5, pp. 329–338, 2013.
  4. E. Gauterin, P. Kammerer, M. Kühn, and H. Schulte, “Effective Wind Speed Estimation: Comparison between Kalman Filter and Takagi-Sugeno Observer Techniques,” ISA Transactions, vol. 62, no. 2016, pp. 60–72, 2015.
  5. E. Kipchirchir and D. Söffker, “IPC-based robust disturbance accommodating control for load mitigation and speed regulation of wind turbines,” Wind Energy, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2893
  6. A. J. Russell, M. Collu, A. S. McDonald, P. R. Thies, A. Keane, and A. R. Quayle, “LIDAR-assisted feedforward individual pitch control of a 15 MW floating offshore wind turbine,” Wind Energy, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2891
  7. P. F. Odgaard and J. Stoustrup, “Results of a Wind Turbine FDI Competition,” in IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Mexico City, Mexico, 2012, pp. 102–107.
  8. P. F. Odgaard, J. Stoustrup, and M. Kinnaert, “Fault Tolerant Control of Wind Turbines - a benchmark model,” in IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Barcelona, Spain, 2009, pp. 155 – 160.
  9. P. F. Odgaard and K. E. Johnson, “Wind turbine fault detection and fault tolerant control - a second challenge,” kk electronic, NREL, Tech. Rep., 2012.
  10. T. Knudsen, T. Bak, and M. Svenstrup, “Survey of wind farm control—power and fatigue optimization,” Wind Energy, vol. 18, no. 8, pp. 1333–1351, 2015. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1760
  11. T.-T. Nguyen and H.-M. Kim, “Cluster-Based Predictive PCC Voltage Control of Large-Scale Offshore Wind Farm,” IEEE Access, vol. 9, pp. 4630–4641, 2021.
  12. A. Stock and W. Leithead, “A generic approach to wind farm control and the power adjusting controller,” Wind Energy, vol. 25, no. 10, pp. 1735–1757, 2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2765
  13. L. E. Andersson, O. Anaya-Lara, J. O. Tande, K. O. Merz, and L. Imsland, “Wind farm control - part i: A review on control system concepts and structures,” IET Renewable Power Generation, vol. 15, no. 10, pp. 2085–2108, 2021. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/rpg2.12160
  14. F. Pöschke, E. Gauterin, M. Kühn, J. Fortmann, and H. Schulte, “Load mitigation and power tracking capability for wind turbines using Liner Matrix Inequality-based control design,” Wind Energy, vol. 23, no. 9, pp. 1792–1809, 2020, september.
  15. F. Pöschke and H. Schulte, “Model-based control of wind turbines for active power control,” at - Automatisierungstechnik, vol. 69, no. 10, pp. 820–835, 2021. [Online]. Available: https://doi.org/10.1515/auto-2021-0047
  16. E. Simley, L. Y. Pao, R. Frehlich, B. Jonkman, and N. Kelley, “Analysis of light detection and ranging wind speed measurements for wind turbine control,” Wind Energy, vol. 17, no. 3, pp. 413–433, March 2014.
  17. F. Pöschke, V. Petrović, F. Berger, L. N. M. Hölling, M. Kühn, and H. Schulte, “Model-based wind turbine control design with power tracking capability: A wind-tunnel validation,” Control Engineering Practice, vol. 120, no. 105014, pp. 1–13, March 2022.
  18. J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, Colorado, Tech. Rep., 2009.
  19. J. Jonkman, “FAST, https://www.nrel.gov/wind/nwtc/fastv8.html, accessed 2th August 2020,” NREL, Tech. Rep., 2020.
  20. C. Clemens, E. Gauterin, F. Pöschke, and H. Schulte, “Assessment criteria for the mechanical loads of wind turbines applied to the example of active power control,” in Proceedings of IFAC World Congress 2020, IFAC PapersOnLine, I. I. F. of Automatic Control), Ed., vol. 53 / 2 / 2020, Berlin, Germany, 2020, p. 341–347, paper. [Online]. Available: https://doi.org/10.1016/j.ifacol.2020.12.183

Summary

We haven't generated a summary for this paper yet.