Control of the von Neumann Entropy for an Open Two-Qubit System Using Coherent and Incoherent Drives (2405.06365v1)
Abstract: This article is devoted to developing an approach for manipulating the von Neumann entropy $S(\rho(t))$ of an open two-qubit system with coherent control and incoherent control inducing time-dependent decoherence rates. The following goals are considered: (a) minimizing or maximizing the final entropy $S(\rho(T))$; (b) steering $S(\rho(T))$ to a given target value; (c) steering $S(\rho(T))$ to a target value and satisfying the pointwise state constraint $S(\rho(t)) \leq \overline{S}$ for a given $\overline{S}$; (d) keeping $S(\rho(t))$ constant at a given time interval. Under the Markovian dynamics determined by a Gorini--Kossakowski--Sudarshan--Lindblad type master equation, which contains coherent and incoherent controls, one- and two-step gradient projection methods and genetic algorithm have been adapted, taking into account the specifics of the objective functionals. The corresponding numerical results are provided and discussed.
- Cong S. Control of Quantum Systems: Theory and Methods. John Wiley & Sons, 2014.
- Gough J.E. Principles and applications of quantum control engineering. Philos. Trans. R. Soc. A. 370, 5241–5258 (2012). http://dx.doi.org/10.1098/rsta.2012.0370
- Pechen A. Engineering arbitrary pure and mixed quantum states. Phys. Rev. A. 84, 042106 (2011). http://dx.doi.org/10.1103/PhysRevA.84.042106
- Shirokov M.E. Continuity of the von Neumann entropy. Commun. Math. Phys. 296, 625–654 (2010). http://dx.doi.org/10.1007/s00220-010-1007-x
- Kosloff R. Quantum thermodynamics: A dynamical viewpoint. Entropy. 15, 2100–2128 (2013). http://dx.doi.org/10.3390/e15062100
- Landau L. Das Daempfungsproblem in der Wellenmechanik. Z. Phys. 45, 430–464 (1927). http://dx.doi.org/10.1007/BF01343064
- Trushechkin A. Unified Gorini-Kossakowski-Lindblad-Sudarshan quantum master equation beyond the secular approximation. Phys. Rev. A. 103, 062226 (2021). http://dx.doi.org/10.1103/PhysRevA.103.062226
- Trushechkin A. Quantum master equations and steady states for the ultrastrong-coupling limit and the strong-decoherence limit. Phys. Rev. A. 106, 042209 (2022). http://dx.doi.org/10.1103/PhysRevA.106.042209
- Antipin A.S. Minimization of convex functions on convex sets by means of differential equations. Differ. Equat. 30, 1365–1375 (1994).
- TensorFlow, Machine Learning Platform: MomentumOptimizer. https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/MomentumOptimizer (accessed on 20 December 2023).
- Solgi R. Genetic Algorithm Package for Python. https://github.com/rmsolgi/geneticalgorithm, https://pypi.org/project/geneticalgorithm/ (accessed on 20 December 2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.