Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Path Planning and Motion Control for Accurate Positioning of Car-like Robots (2405.06290v2)

Published 10 May 2024 in cs.RO, cs.SY, and eess.SY

Abstract: This paper investigates the planning and control for accurate positioning of car-like robots. We propose a solution that integrates two modules: a motion planner, facilitated by the rapidly-exploring random tree algorithm and continuous-curvature (CC) steering technique, generates a CC trajectory as a reference; and a nonlinear model predictive controller (NMPC) regulates the robot to accurately track the reference trajectory. Based on the $\mu$-tangency conditions in prior art, we derive explicit existence conditions and develop associated computation methods for a special class of CC paths which not only admit the same driving patterns as Reeds-Shepp paths but also consist of cusp-free clothoid turns. Afterwards, we create an autonomous vehicle parking scenario where the NMPC endeavors to follow the reference trajectory. Feasibility and computational efficiency of the CC steering are validated by numerical simulation. CarSim-Simulink joint simulations statistically verify that with exactly same NMPC, the closed-loop system with CC trajectories as references substantially outperforms the case where Reeds-Shepp trajectories are used as references.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. T. Fraichard and A. Scheuer, “From Reeds and Shepp’s to continuous-curvature paths,” IEEE Trans. Robot., vol. 20, no. 6, pp. 1025–1035, 2004.
  2. J.-P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, “A motion planner for nonholonomic mobile robots,” IEEE Trans. Robot. Automat., vol. 10, no. 5, pp. 577–593, 1994.
  3. Y. J. Kanayama and B. I. Hartman, “Smooth local-path planning for autonomous vehicles,” Int. J. Robot. Res., vol. 16, no. 3, pp. 263–284, 1997.
  4. C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas, “Symbolic planning and control of robot motion [Grand challenges of robotics],” IEEE Robot. Autom. Mag., vol. 14, no. 1, pp. 61–70, 2007.
  5. G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2, pp. 343–352, 2009.
  6. J. Fu, F. Tian, T. Chai, Y. Jing, Z. Li, and C.-Y. Su, “Motion tracking control design for a class of nonholonomic mobile robot systems,” vol. 50, no. 6, pp. 2150–2156, 2020.
  7. L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents,” Amer. J. Math., vol. 79, no. 3, pp. 497–516, 1957.
  8. J. Reeds and L. Shepp, “Optimal paths for a car that goes both forwards and backwards,” Pac. J. Math., vol. 145, no. 2, pp. 367–393, 1990.
  9. P. R. Giordano, M. Vendittelli, J.-P. Laumond, and P. Soueres, “Nonholonomic distance to polygonal obstacles for a car-like robot of polygonal shape,” IEEE Trans. Robot., vol. 22, no. 5, pp. 1040–1047, 2006.
  10. D. V. Dimarogonas and K. J. Kyriakopoulos, “On the rendezvous problem for multiple nonholonomic agents,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 916–922, 2007.
  11. E. Plaku and S. Karaman, “Motion planning with temporal-logic specifications: Progress and challenges,” AI Communications, vol. 29, no. 1, pp. 151–162, 2016.
  12. D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion planning techniques for automated vehicles.” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 4, pp. 1135–1145, 2016.
  13. S. Xu, R. Zidek, Z. Cao, P. Lu, X. Wang, B. Li, and H. Peng, “System and experiments of model-driven motion planning and control for autonomous vehicles,” vol. 52, no. 9, pp. 5975–5988, 2022.
  14. I. Maurović, M. Seder, K. Lenac, and I. Petrović, “Path planning for active SLAM based on the D* algorithm with negative edge weights,” vol. 48, no. 8, pp. 1321–1331, 2017.
  15. H. Vorobieva, S. Glaser, N. Minoiu-Enache, and S. Mammar, “Automatic parallel parking in tiny spots: path planning and control,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 396–410, 2015.
  16. R. Quirynen, K. Berntorp, K. Kambam, and S. Di Cairano, “Integrated obstacle detection and avoidance in motion planning and predictive control of autonomous vehicles,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 1203–1208.
  17. P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steering control for autonomous vehicle systems,” IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp. 566–580, 2007.
  18. Z. Li, J. Deng, R. Lu, Y. Xu, J. Bai, and C.-Y. Su, “Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach,” vol. 46, no. 6, pp. 740–749, 2016.
  19. I. Matraji, A. Al-Durra, A. Haryono, K. Al-Wahedi, and M. Abou-Khousa, “Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control,” Control Engineering Practice, vol. 72, pp. 167–176, 2018.
  20. W. Shi, S. Song, C. Wu, and C. P. Chen, “Multi pseudo q-learning-based deterministic policy gradient for tracking control of autonomous underwater vehicles,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 12, pp. 3534–3546, 2018.
  21. A. Alouache and Q. Wu, “Fuzzy logic pd controller for trajectory tracking of an autonomous differential drive mobile robot (ie quanser qbot),” Industrial Robot: An International Journal, 2018.
  22. L. Menhour, B. d’Andréa Novel, M. Fliess, D. Gruyer, and H. Mounier, “An efficient model-free setting for longitudinal and lateral vehicle control: Validation through the interconnected pro-sivic/rtmaps prototyping platform,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 2, pp. 461–475, 2017.
  23. A. Eskandarian, C. Wu, and C. Sun, “Research advances and challenges of autonomous and connected ground vehicles,” IEEE Transactions on Intelligent Transportation Systems, 2019.
  24. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.
  25. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, 1996.
  26. S. M. LaValle and J. J. Kuffner Jr., “Randomized kinodynamic planning,” Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.
  27. M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A review,” IEEE Access, vol. 2, pp. 56–77, 2014.
  28. J.-D. Boissonnat, A. Cerezo, and J. Leblond, “A note on shortest paths in the plane subject to a constraint on the derivative of the curvature,” INRIA Research Report-2160, 1994.
  29. H. J. Sussmann, “The Markov-Dubins problem with angular acceleration control,” in Proc. the 36th IEEE Conf. Decision and Control (CDC), vol. 3.   IEEE, 1997, pp. 2639–2643.
  30. J. Villagra, V. Milanés, J. Pérez, and J. Godoy, “Smooth path and speed planning for an automated public transport vehicle,” Robot. Auton. Syst., vol. 60, no. 2, pp. 252–265, 2012.
  31. M. Brezak and I. Petrović, “Real-time approximation of clothoids with bounded error for path planning applications,” IEEE Trans. Robot., vol. 30, no. 2, pp. 507–515, 2014.
  32. A. Scheuer and C. Laugier, “Planning sub-optimal and continuous-curvature paths for car-like robots,” in Proc. 1998 IEEE/RSJ Conf. Intell. Robot. Syst. (IROS), vol. 1.   IEEE, 1998, pp. 25–31.
  33. E. Bakolas and P. Tsiotras, “On the generation of nearly optimal, planar paths of bounded curvature and bounded curvature gradient,” in Proc. the 2009 Amer. Control Conf. (ACC).   IEEE, 2009, pp. 385–390.
  34. K. Yang and S. Sukkarieh, “An analytical continuous-curvature path-smoothing algorithm,” IEEE Trans. Robot., vol. 26, no. 3, pp. 561–568, 2010.
  35. G. Klančar, M. Seder, S. Blažič, I. Škrjanc, and I. Petrović, “Drivable path planning using hybrid search algorithm based on E* and bernstein–bézier motion primitives,” vol. 51, no. 8, pp. 4868–4882, 2021.
  36. T. Berglund, A. Brodnik, H. Jonsson, M. Staffanson, and I. Soderkvist, “Planning smooth and obstacle-avoiding B-spline paths for autonomous mining vehicles,” IEEE Trans. Autom. Sci. Eng., vol. 7, no. 1, pp. 167–172, 2010.
  37. F. Ghilardelli, G. Lini, and A. Piazzi, “Path generation using η4superscript𝜂4\eta^{4}italic_η start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT-splines for a truck and trailer vehicle,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 1, pp. 187–203, 2014.
  38. J. Dai and Y. Wang, “On existence conditions of a class of continuous curvature paths,” in Proc. the 36th Chinese Control Conference (CCC).   IEEE, 2017, pp. 6773–6780.
  39. Z. Wang, A. Ahmad, R. Quirynen, Y. Wang, A. Bhagat, E. Zeino, Y. Zushi, and S. Di Cairano, “Motion planning and model predictive control for automated tractor-trailer hitching maneuver,” in 2022 IEEE Conference on Control Technology and Applications (CCTA).   IEEE, 2022, pp. 676–682.
  40. Z. Wang and J. Wang, “Ultra-local model predictive control: A model-free approach and its application on automated vehicle trajectory tracking,” Control Engineering Practice, vol. 101, p. 104482, 2020.

Summary

We haven't generated a summary for this paper yet.