Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An NMPC Approach using Convex Inner Approximations for Online Motion Planning with Guaranteed Collision Avoidance (1909.08267v3)

Published 18 Sep 2019 in cs.RO, cs.SY, eess.SY, and math.OC

Abstract: Even though mobile robots have been around for decades, trajectory optimization and continuous time collision avoidance remain subject of active research. Existing methods trade off between path quality, computational complexity, and kinodynamic feasibility. This work approaches the problem using a nonlinear model predictive control (NMPC) framework, that is based on a novel convex inner approximation of the collision avoidance constraint. The proposed Convex Inner ApprOximation (CIAO) method finds kinodynamically feasible and continuous time collision free trajectories, in few iterations, typically one. For a feasible initialization, the approach is guaranteed to find a feasible solution, i.e. it preserves feasibility. Our experimental evaluation shows that CIAO outperforms state of the art baselines in terms of planning efficiency and path quality. Experiments on a robot with 12 states show that it also scales to high-dimensional systems. Furthermore real-world experiments demonstrate its capability of unifying trajectory optimization and tracking for safe motion planning in dynamic environments.

Citations (28)

Summary

We haven't generated a summary for this paper yet.