Pathwise non-uniqueness for Brownian motion in a quadrant with oblique reflection (2405.06144v1)
Abstract: Consider the Skorokhod equation in the closed first quadrant: [ X_t=x_0+ B_t+\int_0t{\bf v}(X_s)\, dL_s,] where $B_t$ is standard 2-dimensional Brownian motion, $X_t$ takes values in the quadrant for all $t$, and $L_t$ is a process that starts at 0, is non-decreasing and continuous, and increases only at those times when $X_t$ is on the boundary of the quadrant. Suppose ${\bf v}$ equals $(-a_1,1)$ on the positive $x$ axis, equals $(1,-a_2)$ on the positive $y$ axis, and ${\bf v}(0)$ points into the closed first quadrant. Let $\theta_i=\arctan a_i$, $i=1,2$. It is known that there exists a solution to the Skorokhod equation for all $t\geq 0$ if and only if $\theta_1+\theta_2<\pi/2$ and moreover the solution is unique if $|a_1a_2|<1$. Suppose now that $\theta_1+\theta_2<\pi/2$, $\theta_2<0$, $\theta_1>-\theta_2>0$ and $|a_1a_2|>1$. We prove that for a large class of $(a_1,a_2)$, namely those for which [\frac{\log|a_1|+\log|a_2|}{a_1+a_2}>\pi/2,] pathwise uniqueness for the Skorokhod equation fails to hold.
- Richard F. Bass. Probabilistic techniques in analysis. Probability and its Applications (New York). Springer-Verlag, New York, 1995.
- Richard F. Bass. Diffusions and elliptic operators. Probability and its Applications (New York). Springer-Verlag, New York, 1998.
- Richard F. Bass. Stochastic processes, volume 33 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2011.
- On pathwise uniqueness for reflecting Brownian motion in C1+γsuperscript𝐶1𝛾C^{1+\gamma}italic_C start_POSTSUPERSCRIPT 1 + italic_γ end_POSTSUPERSCRIPT domains. Ann. Probab., 36(6):2311–2331, 2008.
- Synchronous couplings of reflected Brownian motions in smooth domains. Illinois J. Math., 50(1-4):189–268, 2006.
- Obliquely reflected Brownian motion in nonsmooth planar domains. Ann. Probab., 45(5):2971–3037, 2017.
- Régulations déterministes et stochastiques dans le premier “orthant” de 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Stochastics Stochastics Rep., 34(3-4):149–167, 1991.
- K. Burdzy. Multidimensional Brownian excursions and potential theory, volume 164 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.
- SDEs with oblique reflection on nonsmooth domains. Ann. Probab., 21(1):554–580, 1993.
- Correction: “SDEs with oblique reflection on nonsmooth domains” [Ann. Probab. 21 (1993), no. 1, 554–580; mr1207237]. Ann. Probab., 36(5):1992–1997, 2008.
- Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedrons. Theory of Probability & Its Applications, 40(1):1–40, 1996.
- Dirichlet forms and symmetric Markov processes, volume 19 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1994.
- M. Hairer. Convergence of Markov processes. 2021. Lecture notes.
- Reflected Brownian motion on an orthant. Ann. Probab., 9(2):302–308, 1981.
- A Dirichlet process characterization of a class of reflected diffusions. Ann. Probab., 38(3):1062–1105, 2010.
- A second course in stochastic processes. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.
- Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math., 37(4):511–537, 1984.
- Russell Lyons. Strong laws of large numbers for weakly correlated random variables. Michigan Math. J., 35(3):353–359, 1988.
- Bernard Maisonneuve. Exit systems. Ann. Probability, 3(3):399–411, 1975.
- A. Mandelbaum. The dynamic complementarity problem. 1987. Unpublished.
- Birth and death of Markov processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, pages 295–305. Univ. California Press, Berkeley, CA, 1972.
- A. Mandelbaum and L. Van der Heyden. Complementarity and reflection. 1987. Unpublished.
- A boundary property of semimartingale reflecting Brownian motions. Probab. Theory Related Fields, 77(1):87–97, 1988.
- Multidimensional diffusion processes, volume 233 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin-New York, 1979.
- Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant. Probab. Theory Related Fields, 96(3):283–317, 1993.
- Brownian motion in a wedge with oblique reflection. Comm. Pure Appl. Math., 38(4):405–443, 1985.
- Aubin Whitley. Skorokhod problems and semimartingale reflecting stable processes in an orthant. PhD thesis, University of California, San Diego, 2003.
- R. J. Williams. Reflected Brownian motion in a wedge: semimartingale property. Z. Wahrsch. Verw. Gebiete, 69(2):161–176, 1985.
- R. J. Williams. Semimartingale reflecting Brownian motions in the orthant. In Stochastic networks, volume 71 of IMA Vol. Math. Appl., pages 125–137. Springer, New York, 1995.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.