Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Secure Anonymous Communication Networks (2405.06126v1)

Published 9 May 2024 in quant-ph, cs.CR, and cs.NI

Abstract: Anonymous communication networks (ACNs) enable Internet browsing in a way that prevents the accessed content from being traced back to the user. This allows a high level of privacy, protecting individuals from being tracked by advertisers or governments, for example. The Tor network, a prominent example of such a network, uses a layered encryption scheme to encapsulate data packets, using Tor nodes to obscure the routing process before the packets enter the public Internet. While Tor is capable of providing substantial privacy, its encryption relies on schemes, such as RSA and Diffie-HeLLMan for distributing symmetric keys, which are vulnerable to quantum computing attacks and are currently in the process of being phased out. To overcome the threat, we propose a quantum-resistant alternative to RSA and Diffie-HeLLMan for distributing symmetric keys, namely, quantum key distribution (QKD). Standard QKD networks depend on trusted nodes to relay keys across long distances, however, reliance on trusted nodes in the quantum network does not meet the criteria necessary for establishing a Tor circuit in the ACN. We address this issue by developing a protocol and network architecture that integrates QKD without the need for trusted nodes, thus meeting the requirements of the Tor network and creating a quantum-secure anonymous communication network.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. C. Kang, “F.C.C. Repeals Net Neutrality Rules,” The New York Times, December 2017, https://www.nytimes.com/2017/12/14/technology/net-neutrality-repeal-vote.html, Accessed on: December 04, 2023.
  2. A. Arias, “FTC Staff Report Finds Many Internet Service Providers Collect Troves of Personal Data, Users Have Few Options to Restrict Use,” Federal Trade Commission (FTC), October 2021, https://www.ftc.gov/news-events/news/press-releases/2021/10/ftc-staff-report-finds-many-internet-service-providers-collect%-troves-personal-data-users-have-few, Accessed on: December 04, 2023.
  3. R. Dingledine, N. Mathewson, P. F. Syverson et al., “Tor: The Second Generation Onion Router,” in USENIX security symposium, vol. 4, 2004, pp. 303–320.
  4. S. Khattak, M. Javed, S. A. Khayam, Z. A. Uzmi, and V. Paxson, “A Look at the Consequences of Internet Censorship Through an ISP Lens,” in Internet Measurement Conference (IMC), 2014, pp. 271–284.
  5. A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Information, vol. 2, no. 1, pp. 1–8, 2016.
  6. D.-T. Dam, T.-H. Tran, V.-P. Hoang, C.-K. Pham, and T.-T. Hoang, “A survey of post-quantum cryptography: Start of a new race,” Cryptography, vol. 7, no. 3, p. 40, 2023.
  7. D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature, vol. 549, no. 7671, pp. 188–194, 2017.
  8. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Reviews of modern physics, vol. 81, no. 3, p. 1301, 2009.
  9. S. Ghosh and A. Kate, “Post-quantum forward-secure onion routing: (future anonymity in today’s budget),” in International Conference on Applied Cryptography and Network Security.   Springer, 2015, pp. 263–286.
  10. Z. Tujner, T. Rooijakkers, M. van Heesch, and M. Önen, “Qsor: Quantum-safe onion routing,” arXiv preprint arXiv:2001.03418, 2020.
  11. P. Mee and H. Mesha, “The quantum computing threat is just a matter of time,” Oliver Wyman, New York, USA, Tech Report, 2023.
  12. N. S. A. S. Service, “Post-Quantum Cybersecurity Resources,” https://www.nsa.gov/Cybersecurity/Post-Quantum-Cybersecurity-Resources/, Accessed on: December 04, 2023.
  13. S. K. Joshi, D. Aktas, S. Wengerowsky, M. Lončarić, S. P. Neumann, B. Liu, T. Scheidl, G. C. Lorenzo, Ž. Samec, L. Kling et al., “A trusted node–free eight-user metropolitan quantum communication network,” Science advances, vol. 6, no. 36, p. eaba0959, 2020.
  14. B. Huttner, R. Alléaume, E. Diamanti, F. Fröwis, P. Grangier, H. Hübel, V. Martin, A. Poppe, J. A. Slater, T. Spiller et al., “Long-range qkd without trusted nodes is not possible with current technology,” npj Quantum Information, vol. 8, no. 1, p. 108, 2022.
  15. M. Mehic, O. Maurhart, S. Rass, D. Komosny, F. Rezac, and M. Voznak, “Analysis of the public channel of quantum key distribution link,” IEEE Journal of Quantum Electronics, vol. 53, no. 5, pp. 1–8, 2017.
  16. Q. Liu, Y. Huang, Y. Du, Z. Zhao, M. Geng, Z. Zhang, and K. Wei, “Advances in chip-based quantum key distribution,” Entropy, vol. 24, no. 10, p. 1334, 2022.

Summary

We haven't generated a summary for this paper yet.