Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Excluded volume effects on tangentially driven active ring polymers (2405.05380v1)

Published 8 May 2024 in cond-mat.soft

Abstract: The conformational and dynamical properties of active ring polymers are studied by numerical simulations. The two-dimensionally confined polymer is modeled as a closed bead-spring chain, driven by tangential forces, put in contact with a heat bath described by the Brownian multiparticle collision dynamics. Both phantom polymers and chains comprising excluded volume interactions are considered for different bending rigidities. The size and shape are found to be dependent on persistence length, driving force, and bead mutual exclusion. The lack of excluded volume interactions is responsible for a shrinkage of active rings when increasing driving force in the flexible limit while the presence induces a moderate swelling of chains. Internal dynamics of flexible phantom active rings shows activity-enhanced diffusive behavior at large activity values while, in the case of self-avoiding active chains, it is characterized by active ballistic motion not depending on stiffness. The long-time dynamics of active rings is marked by rotational motion whose period scales as the inverse of the applied tangential force, irrespective of persistence length and beads self-exclusion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers–single particle motion and collective behavior: a review, Rep. Prog. Phys. 78, 056601 (2015).
  2. R. G. Winkler, J. Elgeti, and G. Gompper, Active polymers — emergent conformational and dynamical properties: A brief review, J. Phys. Soc. Jpn. 86, 101014 (2017).
  3. J. Elgeti and G. Gompper, Self-propelled rods near surfaces, EPL 85, 38002 (2009).
  4. H. Jiang and Z. Hou, Motion transition of active filaments: rotation without hydrodynamic interactions, Soft Matter 10, 1012 (2014).
  5. A. Ghosh and N. S. Gov, Dynamics of active semiflexible polymers, Biophys. J. 107, 1065 (2014).
  6. T. Eisenstecken, G. Gompper, and R. G. Winkler, Internal dynamics of semiflexible polymers with active noise, J. Chem. Phys. 146, 154903 (2017).
  7. K. R. Prathyusha, S. Henkes, and R. Sknepnek, Dinamically generated patterns in dense suspensions of active filaments, Phys. Rev. E 97, 022606 (2018).
  8. S. K. Anand and S. P. Singh, Structure and dynamics of a self-propelled semiflexible filament, Phys. Rev. E 98, 042501 (2018).
  9. R. G. Winkler and G. Gompper, The physics of active polymers and filaments, J. Chem. Phys. 153, 040901 (2020).
  10. T. Eisenstecken and R. G. Winkler, Path integral description of semiflexible active Brownian polymers, J. Chem. Phys. 156, 064105 (2022).
  11. C. A. Philipps, G. Gompper, and R. G. Winkler, Tangentially driven active polar linear polymers - an analytical study, J. Chem. Phys. 157, 194904 (2022a).
  12. M. Vatin, S. Kundu, and E. Locatelli, Conformation and dynamics of partially active linear polymers, Soft Matter 20, 1892 (2024).
  13. N. Hirokawa, Kinesin and dynein superfamily proteins and the mechanism of organelle transport, Science 279, 519 (1998).
  14. R. Schaleif, Dna looping, Annu. Rev. Biochem. 61, 192 (1992).
  15. J. J. Keya, A. M. R. Kabir, and A. Kakugo, Synchronous operation of biomolecular engines, Biophys. Rev. 12, 401 (2020).
  16. S. M. Mousavi, G. Gompper, and R. G. Winkler, Active Brownonian ring polymers, J. Chem. Phys. 150, 064913 (2019).
  17. E. Locatelli, V. Bianco, and P. Malgaretti, Active polymer rings: activity-induced collapse and dynamicl arrest, Phys. Rev. Lett. 126, 097801 (2021).
  18. C. A. Philipps, G. Gompper, and R. G. Winkler, Dynamics of active polar ring polymers, Phys. Rev. E 105, L062591 (2022b).
  19. W. Chen, J. Chen, and L. An, Tumbling and tank-treading dynamics of individual ring polymers in shear flow, Soft Matter 9, 4312 (2013).
  20. P. S. Lang, B. Obermayer, and E. Frey, Dynamics of a semiflexible polymer or polymer ring in shear flow, Phys. Rev. E 89, 022606 (2014).
  21. M. Liebetreu, M. Ripoll, and C. N. Likos, Trefoil knot hydrodynamic delocalization on sheared ring polymers, ACS Macro Lett. 7, 447 (2018).
  22. M. Liebetreu and C. N. Likos, Hydrodynamic inflation of ring polymers under shear, Communications Materials 1, 4 (2020).
  23. H. Noguchi and G. Gompper, Fluid vesicles with viscous membranes in shear flow, Phys. Rev. Lett. 93, 258102 (2004).
  24. S. Kumar and S. Thakur, Local polar and long-range isotropic activity assisted swelling and collapse dynamics of an active ring polymer, Macromolecules 56, 5229 (2023).
  25. E. F. Teixeira, H. C. M. Fernandes, and L. G. Brunnet, A single active ring model with velocity self-alignment, Soft Matter 17, 5991 (2021).
  26. L. Liu, E. Tüzel, and J. L. Ross, Loop formation of microtubules during gliding at high density, J. Phys.: Condens. Matter 23, 374104 (2011).
  27. M. Ripoll, R. G. Winkler, and G. Gompper, Hydrodynamic screening of star polymers in shear flow, Eur. Phys. J. E 23, 349 (2007).
  28. R. Kapral, Multiparticle collision dynamics: Simulations of complex systems on mesoscale, Adv. Chem. Phys. 140, 89 (2008).
  29. B. Kaoui, J. Harting, and C. Misbah, Two-dimensional vesicle dynamics under shear flow: Effect of confinement, Phys. Rev. E 83, 066319 (2011).
  30. A. Lamura, Numerical study of a confined vesicle in shear flow at finite temperature, Mathematics 10, 3570 (2022).
  31. R. G. Winkler, P. Reineker, and L. Harnau, Models and equilibrium properties of stiff molecular chains, J. Chem. Phys. 101, 8119 (1994).
  32. V. Bianco, E. Locatelli, and P. Malgaretti, Globulelike conformation and enhanced diffusion of active polymers, Phys. Rev. Lett. 121, 217802 (2018).
  33. J. P. Miranda-López, E. Locatelli, and C. Valeriani, Self-organized states of solutions of active ring polymers in bulk and under confinement, J. Chem. Theory Comput. 20, 1636 (2024).
  34. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
  35. T. Ihle and D. M. Kroll, Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow, Phys. Rev. E 63, 020201(R) (2001).
  36. B. Rupp and F. Nédélec, Patterns of molecular motors that guide and sort filaments, Lab Chip 12, 4903 (2012).
  37. H. W. Diehl and E. Eisenriegler, Universal shape ratios for open and closed random walks: exact results for all d, J. Phys. A 22, L87 (1989).
  38. A. Nikoubashman, A. Milchev, and K. Binder, Dynamics of single semiflexible polymers in dilute solution, J. Chem. Phys. 145, 234903 (2016).
  39. E. Farge and A. C. Maggs, Dynamic scattering from semiflexible polymers, Macromolecules 26, 5041 (1993).
  40. R. G. Winkler, Diffusion and segmental dynamics of rodlike molecules by fluorescence correlation spectroscopy, J. Chem. Phys. 127, 054904 (2007).
  41. A. Martin-Gomez, G. Gompper, and R. G. Winkler, Active Brownian filamentous polymers under shear flow, Polymers 10, 837 (2018).
  42. A. Panda, R. G. Winkler, and S. P. Singh, Characteristic features of self-avoiding active Brownian polymers under linear shear flow, Soft Matter 19, 8577 (2023).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube