Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Swampland Conjectures Constraints on Dark Energy from a Highly Curved Field Space (2405.05304v2)

Published 8 May 2024 in hep-th, astro-ph.CO, gr-qc, and hep-ph

Abstract: We study the interplay of the trans-Planckian censorship conjecture (TCC) and the swampland distance conjecture (SDC) in the context of multifield dark energy in a curved field space. In this scenario, the phase of accelerated expansion is realized as non-geodesic motion in a highly-curved field space, reminiscent of models developed in the context of inflation. The model features a stable attractor solution with near constant equation of state $w\simeq -1$, and predicts that the current era of accelerated expansion is eternal. The latter implies an eventual conflict with the TCC, which holds that the duration of any epoch of cosmic acceleration is bounded by the requirement that the large-scale observable universe is blind to Planck-scale early universe physics. This tension can be resolved by an interplay with the distance conjecture: for suitable parameter values, the apparent violation of the TCC occurs well after the fields have traversed a Planckian distance. The SDC then predicts a breakdown of the effective field theory (EFT) before the TCC can be violated. We derive the constraints on the model arising from the SDC+TCC and the de Sitter conjecture. We demonstrate that the model can be consistent with both swampland conjectures and observational data from Planck 2018 and the Dark Energy Spectroscopic Instrument.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. M. Li, X. D. Li, S. Wang and Y. Wang, “Dark Energy,” Commun. Theor. Phys. 56 (2011), 525-604 doi:10.1088/0253-6102/56/3/24 [arXiv:1103.5870 [astro-ph.CO]].
  2. L. A. Escamilla, S. Pan, E. Di Valentino, A. Paliathanasis, J. A. Vázquez and W. Yang, “Oscillations in the Dark?,” [arXiv:2404.00181 [astro-ph.CO]].
  3. P. J. E. Peebles and B. Ratra, “Cosmology with a Time Variable Cosmological Constant,” Astrophys. J.  325, L17 (1988). doi:10.1086/185100; B. Ratra and P. J. E. Peebles, “Cosmological Consequences of a Rolling Homogeneous Scalar Field,” Phys. Rev. D 37, 3406 (1988). doi:10.1103/PhysRevD.37.3406
  4. C. Wetterich, “Cosmology and the Fate of Dilatation Symmetry,” Nucl. Phys. B 302, 668 (1988) doi:10.1016/0550-3213(88)90193-9 [arXiv:1711.03844 [hep-th]].
  5. H. Bernardo, R. Brandenberger and J. Fröhlich, “Towards a dark sector model from string theory,” JCAP 09 (2022), 040 doi:10.1088/1475-7516/2022/09/040 [arXiv:2201.04668 [hep-th]].
  6. A. R. Brown, “Hyperbolic Inflation,” Phys. Rev. Lett. 121 (2018) no.25, 251601 doi:10.1103/PhysRevLett.121.251601 [arXiv:1705.03023 [hep-th]].
  7. S. Alexander, H. Bernardo and M. W. Toomey, “Addressing the Hubble and S 8 tensions with a kinetically mixed dark sector,” JCAP 03 (2023), 037 doi:10.1088/1475-7516/2023/03/037 [arXiv:2207.13086 [astro-ph.CO]].
  8. A. Bedroya and C. Vafa, “Trans-Planckian Censorship and the Swampland,” JHEP 2009, 123 (2020) [arXiv:1909.11063 [hep-th]].
  9. R. Brandenberger, “Fundamental Physics, the Swampland of Effective Field Theory and Early Universe Cosmology,” arXiv:1911.06058 [hep-th]; R. Brandenberger, “Trans-Planckian Censorship Conjecture and Early Universe Cosmology,” arXiv:2102.09641 [hep-th]; R. Brandenberger, “String Cosmology and the Breakdown of Local Effective Field Theory,” [arXiv:2112.04082 [hep-th]]; R. Brandenberger and V. Kamali, “Unitarity Problems for an Effective Field Theory Description of Early Universe Cosmology,” [arXiv:2203.11548 [hep-th]].
  10. H. Ooguri and C. Vafa, “On the Geometry of the String Landscape and the Swampland,” Nucl. Phys. B 766, 21 (2007) doi:10.1016/j.nuclphysb.2006.10.033 [hep-th/0605264].
  11. T. D. Brennan, F. Carta and C. Vafa, “The String Landscape, the Swampland, and the Missing Corner,” PoS TASI 2017, 015 (2017) doi:10.22323/1.305.0015 [arXiv:1711.00864 [hep-th]].
  12. E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67, no.6, 1900037 (2019) doi:10.1002/prop.201900037 [arXiv:1903.06239 [hep-th]].
  13. M. van Beest, J. Calderón-Infante, D. Mirfendereski and I. Valenzuela, “Lectures on the Swampland Program in String Compactifications,” Phys. Rept. 989, 1-50 (2022) doi:10.1016/j.physrep.2022.09.002 [arXiv:2102.01111 [hep-th]].
  14. D. Harlow, B. Heidenreich, M. Reece and T. Rudelius, “Weak gravity conjecture,” Rev. Mod. Phys. 95 (2023) no.3, 3 doi:10.1103/RevModPhys.95.035003 [arXiv:2201.08380 [hep-th]].
  15. M. Reece, “Photon Masses in the Landscape and the Swampland,” JHEP 07 (2019), 181 doi:10.1007/JHEP07(2019)181 [arXiv:1808.09966 [hep-th]].
  16. E. W. Kolb, A. J. Long and E. McDonough, “Gravitino Swampland Conjecture,” Phys. Rev. Lett. 127 (2021) no.13, 131603 doi:10.1103/PhysRevLett.127.131603 [arXiv:2103.10437 [hep-th]].
  17. G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, “De Sitter Space and the Swampland,” arXiv:1806.08362 [hep-th].
  18. P. Agrawal, G. Obied, P. J. Steinhardt and C. Vafa, “On the Cosmological Implications of the String Swampland,” Phys. Lett. B 784, 271 (2018) doi:10.1016/j.physletb.2018.07.040 [arXiv:1806.09718 [hep-th]].
  19. L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, “Dark Energy in the Swampland,” Phys. Rev. D 98, no. 12, 123502 (2018) doi:10.1103/PhysRevD.98.123502 [arXiv:1808.02877 [astro-ph.CO]].
  20. S. K. Garg and C. Krishnan, “Bounds on Slow Roll and the de Sitter Swampland,” JHEP 11, 075 (2019) doi:10.1007/JHEP11(2019)075 [arXiv:1807.05193 [hep-th]].
  21. H. Ooguri, E. Palti, G. Shiu and C. Vafa, “Distance and de Sitter Conjectures on the Swampland,” Phys. Lett. B 788, 180-184 (2019) doi:10.1016/j.physletb.2018.11.018 [arXiv:1810.05506 [hep-th]].
  22. K. Dasgupta, M. Emelin, E. McDonough and R. Tatar, “Quantum Corrections and the de Sitter Swampland Conjecture,” JHEP 01, 145 (2019) doi:10.1007/JHEP01(2019)145 [arXiv:1808.07498 [hep-th]].
  23. A. Bedroya, R. Brandenberger, M. Loverde and C. Vafa, “Trans-Planckian Censorship and Inflationary Cosmology,” Phys. Rev. D 101, no. 10, 103502 (2020) [arXiv:1909.11106 [hep-th]].
  24. S. Hannestad, “What is the lowest possible reheating temperature?,” Phys. Rev. D 70 (2004), 043506 doi:10.1103/PhysRevD.70.043506 [arXiv:astro-ph/0403291 [astro-ph]].
  25. E. J. Copeland, A. R. Liddle and D. Wands, “Exponential potentials and cosmological scaling solutions,” Phys. Rev. D 57 (1998), 4686-4690 doi:10.1103/PhysRevD.57.4686 [arXiv:gr-qc/9711068 [gr-qc]].
  26. S. Tsujikawa, “Quintessence: A Review,” Class. Quant. Grav. 30 (2013), 214003 doi:10.1088/0264-9381/30/21/214003 [arXiv:1304.1961 [gr-qc]].
  27. T. Bjorkmo, “Rapid-Turn Inflationary Attractors,” Phys. Rev. Lett. 122 (2019) no.25, 251301 doi:10.1103/PhysRevLett.122.251301 [arXiv:1902.10529 [hep-th]].
  28. T. Bjorkmo and M. C. D. Marsh, “Hyperinflation generalised: from its attractor mechanism to its tension with the ‘swampland conditions’,” JHEP 04 (2019), 172 doi:10.1007/JHEP04(2019)172 [arXiv:1901.08603 [hep-th]].
  29. S. Garcia-Saenz, S. Renaux-Petel and J. Ronayne, “Primordial fluctuations and non-Gaussianities in sidetracked inflation,” JCAP 07 (2018), 057 doi:10.1088/1475-7516/2018/07/057 [arXiv:1804.11279 [astro-ph.CO]].
  30. P. Christodoulidis, D. Roest and E. I. Sfakianakis, “Angular inflation in multi-field α𝛼\alphaitalic_α-attractors,” JCAP 11 (2019), 002 doi:10.1088/1475-7516/2019/11/002 [arXiv:1803.09841 [hep-th]].
  31. F. Apers, J. P. Conlon, E. J. Copeland, M. Mosny and F. Revello, “String Theory and the First Half of the Universe,” [arXiv:2401.04064 [hep-th]].
  32. Saltman, Alex, and Eva Silverstein. “The Scaling of the No Scale Potential and de Sitter Model Building.” Journal of High Energy Physics, vol. 2004, no. 11, Nov. 2004, pp. 066-066. DOI.org (Crossref), https://doi.org/10.1088/1126-6708/2004/11/066.
  33. E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart and D. Wands, “False vacuum inflation with Einstein gravity,” Phys. Rev. D 49, 6410-6433 (1994) doi:10.1103/PhysRevD.49.6410 [arXiv:astro-ph/9401011 [astro-ph]].
  34. Renaux-Petel, Sébastien, and Krzysztof Turzyński. “Geometrical Destabilization of Inflation.” Physical Review Letters, vol. 117, no. 14, Sept. 2016, p. 141301. APS, https://doi.org/10.1103/PhysRevLett.117.141301.
  35. De Angelis, Mariaveronica, and Carsten Van De Bruck. “Adiabatic and Isocurvature Perturbations in Extended Theories with Kinetic Couplings.” Journal of Cosmology and Astroparticle Physics, vol. 2023, no. 10, Oct. 2023, p. 023. DOI.org (Crossref), https://doi.org/10.1088/1475-7516/2023/10/023.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.