Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Scale Self-Supervised Channel Charting with Sensor Fusion (2405.04357v1)

Published 7 May 2024 in cs.IT, cs.AI, and math.IT

Abstract: The sensing and positioning capabilities foreseen in 6G have great potential for technology advancements in various domains, such as future smart cities and industrial use cases. Channel charting has emerged as a promising technology in recent years for radio frequency-based sensing and localization. However, the accuracy of these techniques is yet far behind the numbers envisioned in 6G. To reduce this gap, in this paper, we propose a novel channel charting technique capitalizing on the time of arrival measurements from surrounding Transmission Reception Points (TRPs) along with their locations and leveraging sensor fusion in channel charting by incorporating laser scanner data during the training phase of our algorithm. The proposed algorithm remains self-supervised during training and test phases, requiring no geometrical models or user position ground truth. Simulation results validate the achievement of a sub-meter level localization accuracy using our algorithm 90% of the time, outperforming the state-of-the-art channel charting techniques and the traditional triangulation-based approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. 3GPP, “NG Radio Access Network (NG-RAN); Stage 2 functional specification of User Equipment (UE) positioning in NG-RAN,” Technical Specification 3GPP TS 38.305, 2022.
  2. M. Ahadi and F. Kaltenberger, “5GNR Indoor Positioning By Joint DL-TDoA and DL-AoD,” in 2023 IEEE Wireless Communications and Networking Conference (WCNC), 2023.
  3. A. Nessa, B. Adhikari, F. Hussain, and X. N. Fernando, “A Survey of Machine Learning for Indoor Positioning,” IEEE Access, vol. 8, pp. 214 945–214 965, 2020.
  4. P. Ferrand, M. Guillaud, C. Studer, and O. Tirkkonen, “Wireless channel charting: Theory, practice, and applications,” IEEE Communications Magazine, vol. 61, no. 6, pp. 124–130, 2023.
  5. L. Van Der Maaten, E. O. Postma, H. J. van den Herik et al., “Dimensionality reduction: A comparative review,” Journal of Machine Learning Research, vol. 10, no. 66-71, p. 13, 2009.
  6. C. Studer, S. Medjkouh, E. Gonultaş, T. Goldstein, and O. Tirkkonen, “Channel Charting: Locating Users Within the Radio Environment Using Channel State Information,” IEEE Access, vol. 6, pp. 47 682–47 698, 2018.
  7. J. Deng, S. Medjkouh, N. Malm, O. Tirkkonen, and C. Studer, “Multipoint Channel Charting for Wireless Networks,” in 2018 52nd Asilomar Conference on Signals, Systems, and Computers, 2018, pp. 286–290.
  8. C. Geng, H. Huang, and J. Langerman, “Multipoint Channel Charting With Multiple-Input Multiple-Output Convolutional Autoencoder,” in 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), 2020, pp. 1022–1028.
  9. P. Huang, O. Castañeda, E. Gönültaş, S. Medjkouh, O. Tirkkonen, T. Goldstein, and C. Studer, “Improving Channel Charting with Representation -Constrained Autoencoders,” 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:199501899
  10. P. Agostini, Z. Utkovski, S. Stańczak, A. A. Memon, B. Zafar, and M. Haardt, “Not-Too-Deep Channel Charting (N2D-CC),” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 2160–2165.
  11. E. Lei, O. Castañeda, O. Tirkkonen, T. Goldstein, and C. Studer, “Siamese Neural Networks for Wireless Positioning and Channel Charting,” in 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2019, pp. 200–207.
  12. M. Stahlke, G. Yammine, T. Feigl, B. M. Eskofier, and C. Mutschler, “Indoor Localization With Robust Global Channel Charting: A Time-Distance-Based Approach,” IEEE Transactions on Machine Learning in Communications and Networking, vol. 1, pp. 3–17, 2023.
  13. P. Ferrand, A. Decurninge, L. G. Ordoñez, and M. Guillaud, “Triplet-Based Wireless Channel Charting: Architecture and Experiments,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 8, pp. 2361–2373, 2021.
  14. F. Euchner, P. Stephan, M. Gauger, S. Dörner, and S. Ten Brink, “Improving Triplet-Based Channel Charting on Distributed Massive MIMO Measurements,” in 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), 2022.
  15. A. Aly and E. Ayanoglu, “Estimation of Cellular Wireless User Coordinates via Channel Charting and MUSIC,” in 2023 International Conference on Computing, Networking and Communications (ICNC), 2023, pp. 343–347.
  16. F. Euchner, P. Stephan, and S. t. Brink, “Augmenting channel charting with classical wireless source localization techniques,” in 2023 57th Asilomar Conference on Signals, Systems, and Computers, 2023, pp. 1641–1647.
  17. M. Stahlke, G. Yammine, T. Feigl, B. M. Eskofier, and C. Mutschler, “Velocity-Based Channel Charting with Spatial Distribution Map Matching,” 2023.
  18. S. Taner, V. Palhares, and C. Studer, “Channel Charting in Real-World Coordinates,” in 2023 IEEE Global Communications Conference (GLOBECOM 2023).   IEEE, 2023.
  19. P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,” in Sensor fusion IV: control paradigms and data structures, vol. 1611.   Spie, 1992, pp. 586–606.
  20. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948 vol.4.
  21. F. Gustafsson and F. Gunnarsson, “Positioning using time-difference of arrival measurements,” in 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03)., vol. 6, 2003, pp. VI–553.
  22. H. AL–Tous, P. Kazemi, C. Studer, and O. Tirkkonen, “Channel Charting with Angle-Delay-Power-Profile Features and Earth-Mover Distance,” in 2022 56th Asilomar Conference on Signals, Systems, and Computers, 2022, pp. 1195–1201.
Citations (1)

Summary

We haven't generated a summary for this paper yet.