Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel Charting in Real-World Coordinates with Distributed MIMO (2406.13722v1)

Published 19 Jun 2024 in cs.IT, eess.SP, and math.IT

Abstract: Channel charting is an emerging self-supervised method that maps channel-state information (CSI) to a low-dimensional latent space (the channel chart) that represents pseudo-positions of user equipments (UEs). While channel charts preserve local geometry, i.e., nearby UEs are nearby in the channel chart (and vice versa), the pseudo-positions are in arbitrary coordinates and global geometry is typically not preserved. In order to embed channel charts in real-world coordinates, we first propose a bilateration loss for distributed multiple-input multiple-output (D-MIMO) wireless systems in which only the access point (AP) positions are known. The idea behind this loss is to compare the received power at pairs of APs to determine whether a UE should be placed closer to one AP or the other in the channel chart. Second, we propose a line-of-sight (LoS) bounding-box loss that places the UE in a predefined LoS area of each AP that is estimated to have a LoS path to the UE. We demonstrate the efficacy of combining both of these loss functions with neural-network-based channel charting using ray-tracing-based and measurement-based channel vectors. Our approach outperforms several baselines and maintains the self-supervised nature of channel charting as it does not rely on geometrical propagation models or require ground-truth UE position information.

Citations (9)

Summary

We haven't generated a summary for this paper yet.