Asymptotics of the partition function for beta-ensembles at high temperature (2405.04199v1)
Abstract: We consider a model for a gas of $N$ confined particles interacting via a two-body logarithmic interaction, namely the real $\beta$-ensembles. We are interested in the regime where the inverse temperature scales as $N\beta=2P$ with $P$ a fixed positive parameter; this is called the high-temperature regime. The confining potential is of the form $x2+\phi$ with bounded smooth function $\phi$. We establish for this model, the existence of a large-$N$ asymptotic expansion for the associated partition function. We also prove the existence of a large-$N$ asymptotic expansion of linear statistics for general confining potentials. Our method is based on the analysis of the loop equations. Finally, we establish a continuity result for the equilibrium density with respect to the potential dependence.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.