Adjoint Sensitivity Analysis on Multi-Scale Bioprocess Stochastic Reaction Network (2405.04011v2)
Abstract: Motivated by the pressing challenges in the digital twin development for biomanufacturing systems, we introduce an adjoint sensitivity analysis (SA) approach to expedite the learning of mechanistic model parameters. In this paper, we consider enzymatic stochastic reaction networks representing a multi-scale bioprocess mechanistic model that allows us to integrate disparate data from diverse production processes and leverage the information from existing macro-kinetic and genome-scale models. To support forward prediction and backward reasoning, we develop a convergent adjoint SA algorithm studying how the perturbations of model parameters and inputs (e.g., initial state) propagate through enzymatic reaction networks and impact on output trajectory predictions. This SA can provide a sample efficient and interpretable way to assess the sensitivities between inputs and outputs accounting for their causal dependencies. Our empirical study underscores the resilience of these sensitivities and illuminates a deeper comprehension of the regulatory mechanisms behind bioprocess through sensitivities.
- A handy, accurate, invertible and integrable expression for dawson’s function. 29:18, 09 2019. doi: 10.15174/au.2019.2124.
- Michael C. Fu. Stochastic Gradient Estimation, pages 105–147. Springer New York, New York, NY, 2015. ISBN 978-1-4939-1384-8. doi: 10.1007/978-1-4939-1384-8_5. URL https://doi.org/10.1007/978-1-4939-1384-8_5.
- Richard L. Hall. Inverse moments for a class of truncated normal distributions. Sankhyā: The Indian Journal of Statistics, Series B (1960-2002), 41(1/2):66–76, 1979. ISSN 05815738. URL http://www.jstor.org/stable/25052135.
- A. John Bailer. Probabilistic techniques in exposure assessment. a handbook for dealing with variability and uncertainty in models and inputs. a. c. cullen and h. c. frey, plenum press, new york and london, 1999. no. of pages: ix + 335. price: $99.50. isbn 0-306-45956-6. Statistics in Medicine, 20(14):2211–2213, 2001. doi: https://doi.org/10.1002/sim.958. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.958.
- Gershon Kedem. Automatic differentiation of computer programs. ACM Trans. Math. Softw., 6(2):150–165, jun 1980. ISSN 0098-3500. doi: 10.1145/355887.355890. URL https://doi.org/10.1145/355887.355890.
- Sensitivity analysis in chemical kinetics: Recent developments and computational comparisons. International Journal of Chemical Kinetics, 16(5):559–578, 1984. doi: https://doi.org/10.1002/kin.550160506. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/kin.550160506.
- H. Kunita. Stochastic Flows and Jump-diffusions. Probability theory and stochastic modelling. Springer, 2019. ISBN 9789811338021. URL https://books.google.com/books?id=_hftxgEACAAJ.
- Kinetic modeling of mammalian cell culture bioprocessing: The quest to advance biomanufacturing. Biotechnology Journal, 13(3):1700229, 2018. doi: https://doi.org/10.1002/biot.201700229. URL https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/biot.201700229.
- Scalable gradients for stochastic differential equations. ArXiv, abs/2001.01328, 2020. URL https://api.semanticscholar.org/CorpusID:209862121.
- Die kinetik der invertinwirkung. Biochemische Zeitschrift, 49:333 – 369, 2007.
- Ilya M. Sobol. Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. 2001. URL https://api.semanticscholar.org/CorpusID:202584415.
- Stochastic molecular reaction queueing network modeling for in vitro transcription process. In Proceedings of the Winter Simulation Conference, WSC ’23, page 1900–1911. IEEE Press, 2024. ISBN 9798350369663.
- Zhike Zi. Sensitivity analysis approaches applied to systems biology models. IET systems biology, 5 6:336–6, 2011. URL https://api.semanticscholar.org/CorpusID:473778.