Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Inhomogeneous wave kinetic equation and its hierarchy in polynomially weighted $L^\infty$ spaces (2405.03984v1)

Published 7 May 2024 in math.AP

Abstract: Inspired by ideas stemming from the analysis of the Boltzmann equation, in this paper we expand well-posedness theory of the spatially inhomogeneous 4-wave kinetic equation, and also analyze an infinite hierarchy of PDE associated with this nonlinear equation. More precisely, we show global in time well-posedness of the spatially inhomogeneous 4-wave kinetic equation for polynomially decaying initial data. For the associated infinite hierarchy, we construct global in time solutions using the solutions of the wave kinetic equation and the Hewitt-Savage theorem. Uniqueness of these solutions is proved by using a combinatorial board game argument tailored to this context, which allows us to control the factorial growth of the Dyson series.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com