Spin-Hall conductivity and optical characteristics of noncentrosymmetric quantum spin Hall insulators: the case of PbBiI (2405.03655v2)
Abstract: Quantum spin Hall insulators have attracted significant attention in recent years. Understanding the optical properties and spin Hall effect in these materials is crucial for technological advancements. In this study, we present theoretical analyses to explore the optical properties, Berry curvature and spin Hall conductivity of pristine and perturbed PbBiI using the linear combination of atomic orbitals and the Kubo formula. The system is not centrosymmetric and it is hosting at the same time Rashba spin-splitting and quantized spin Hall conductivity. Our calculations reveal that the electronic structure can be modified using staggered exchange fields and electric fields, leading to changes in the optical properties. Additionally, the spin Berry curvature and spin Hall conductivity are investigated as a function of the energy and temperature. The results indicate that due to the small dynamical spin Hall conductivity, generating an ac spin current in PbBiI requires the use of external magnetic fields or magnetic materials.
- M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
- B. A. Bernevig and S.-C. Zhang, Quantum spin hall effect, Phys. Rev. Lett. 96, 106802 (2006).
- X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
- D. Bercioux and P. Lucignano, Quantum transport in rashba spin–orbit materials: a review, Reports on Progress in Physics 78, 106001 (2015).
- B. Yan and S.-C. Zhang, Topological materials, Reports on Progress in Physics 75, 096501 (2012).
- F. D. M. Haldane, Model for a quantum hall effect without landau levels: Condensed-matter realization of the ”parity anomaly”, Phys. Rev. Lett. 61, 2015 (1988).
- D. Pesin and A. H. MacDonald, Spintronics and pseudospintronics in graphene and topological insulators, Nature Materials 11, 409 (2012).
- R. Jansen, Silicon spintronics, Nature Materials 11, 400 (2012).
- A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
- S. M. Young and C. L. Kane, Dirac semimetals in two dimensions, Phys. Rev. Lett. 115, 126803 (2015).
- L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106, 106802 (2011).
- T. C. Phong and L. T. T. Phuong, Optical refraction and absorption spectra in perturbed monolayer PbBiI, Journal of Applied Physics 132, 014302 (2022), https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/5.0097931/16509370/014302_1_online.pdf .
- B. D. Hoi, Effect of C3vsubscript𝐶3𝑣{C}_{3v}italic_C start_POSTSUBSCRIPT 3 italic_v end_POSTSUBSCRIPT symmetry breaking on the noncentrosymmetric quantum spin hall insulating phase and optical characteristics of monolayer pbbii, Phys. Rev. B 106, 165424 (2022).
- T. C. Phong, V. T. Lam, and B. D. Hoi, Tuning electronic phase in noncentrosymmetric quantum spin hall insulators through physical stimuli, Journal of Physics: Condensed Matter 33, 325502 (2021).
- S. Murakami, N. Nagaosa, and S.-C. Zhang, Dissipationless quantum spin current at room temperature, Science 301, 1348 (2003), https://www.science.org/doi/pdf/10.1126/science.1087128 .
- T. Jungwirth, J. Wunderlich, and K. Olejník, Spin hall effect devices, Nature Materials 11, 382 (2012).
- I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004).
- I. Kupčić, Incoherent optical conductivity and breakdown of the generalized drude formula in quasi-one-dimensional bad metallic systems, Phys. Rev. B 79, 235104 (2009).
- G. Y. Guo, Y. Yao, and Q. Niu, Ab initio calculation of the intrinsic spin hall effect in semiconductors, Phys. Rev. Lett. 94, 226601 (2005).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.