Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Rate-Distortion-Classification Approach for Lossy Image Compression (2405.03500v1)

Published 6 May 2024 in cs.MM, cs.AI, cs.CV, cs.IT, and math.IT

Abstract: In lossy image compression, the objective is to achieve minimal signal distortion while compressing images to a specified bit rate. The increasing demand for visual analysis applications, particularly in classification tasks, has emphasized the significance of considering semantic distortion in compressed images. To bridge the gap between image compression and visual analysis, we propose a Rate-Distortion-Classification (RDC) model for lossy image compression, offering a unified framework to optimize the trade-off between rate, distortion, and classification accuracy. The RDC model is extensively analyzed both statistically on a multi-distribution source and experimentally on the widely used MNIST dataset. The findings reveal that the RDC model exhibits desirable properties, including monotonic non-increasing and convex functions, under certain conditions. This work provides insights into the development of human-machine friendly compression methods and Video Coding for Machine (VCM) approaches, paving the way for end-to-end image compression techniques in real-world applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yuefeng Zhang (4 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com