Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Nonclassical signatures of photon-phonon antibunching in a multifield driven optomechanical cavity (2405.02896v2)

Published 5 May 2024 in quant-ph and physics.optics

Abstract: Destructive interference-based photon-phonon antibunching can lead to violations of classical inequalities in optomechanical cavity systems. In this paper, we explore the violation of the classical Cauchy-Schwarz inequality by examining second-order auto-correlation and cross-correlation functions, as well as Bell's nonlocality, to analyze the quantum correlations of single photon-phonon excitations when the system is driven by two weak probe fields. We propose that the violation of the Cauchy-Schwarz inequality can serve as an indicator for the stronger nonclassical tests associated with Bell's theorem. Our system reveals strong quantum correlations of photon-phonon pairs with distinctive antidiagonal patterns of photon filtering. For numerical analysis, we consider a weak effective optomechanical coupling strength and various optical-to-mechanical field amplitude ratios that enable unconventional photon (phonon) blockades at resonance. The findings are significant for producing sub-Poissonian signals under optimal conditions and have potential applications in hybrid systems for generating on-demand single photon-phonon pairs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. G. S. Agarwal, Quantum optics (Cambridge University Press, 2012).
  2. A. M. Marino, V. Boyer, and P. D. Lett, Violation of the cauchy-schwarz inequality in the macroscopic regime, Physical review letters 100, 233601 (2008).
  3. H. J. Kimble, M. Dagenais, and L. Mandel, Photon antibunching in resonance fluorescence, Phys. Rev. Lett. 39, 691 (1977).
  4. J. Steele, The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities, MAA problem books series (Cambridge University Press, 2004).
  5. M. Reid and D. Walls, Violations of classical inequalities in quantum optics, Physical Review A 34, 1260 (1986).
  6. N. A. Ansari and M. S. Zubairy, Violation of cauchy-schwarz and bell’s inequalities in four-wave mixing, Physical Review A 38, 2380 (1988).
  7. H. Wu and M. Xiao, Bright correlated twin beams from an atomic ensemble in the optical cavity, Physical Review A 80, 063415 (2009).
  8. M. Trif and P. Simon, Photon cross-correlations emitted by a josephson junction in two microwave cavities, Physical Review B 92, 014503 (2015).
  9. M. O. Araújo, L. S. Marinho, and D. Felinto, Observation of nonclassical correlations in biphotons generated from an ensemble of pure two-level atoms, Physical Review Letters 128, 083601 (2022).
  10. Y. Fan, J. Li, and Y. Wu, Nonclassical magnon pair generation and cauchy-schwarz inequality violation, Physical Review A 108, 053715 (2023).
  11. J. M. de Nova, F. Sols, and I. Zapata, Violation of cauchy-schwarz inequalities by spontaneous hawking radiation in resonant boson structures, Physical Review A 89, 043808 (2014).
  12. J. S. Bell, Speakable and unspeakable in quantum mechanics: Collected papers on quantum philosophy (Cambridge university press, 2004).
  13. A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Physical review 47, 777 (1935).
  14. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Reviews of Modern Physics 86, 1391 (2014).
  15. J. Guo, R. Norte, and S. Gröblacher, Feedback cooling of a room temperature mechanical oscillator close to its motional ground state, Physical review letters 123, 223602 (2019).
  16. J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Physical Review Letters 101, 263602 (2008).
  17. T. C. H. Liew and V. Savona, Single photons from coupled quantum modes, Phys. Rev. Lett. 104, 183601 (2010).
  18. S. Aldana, C. Bruder, and A. Nunnenkamp, Equivalence between an optomechanical system and a kerr medium, Physical Review A 88, 043826 (2013).
  19. R. H. Brown and R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature 177, 27 (1956).
  20. N. Lörch and K. Hammerer, Sub-poissonian phonon lasing in three-mode optomechanics, Physical Review A 91, 061803 (2015).
  21. M.-A. Lemonde, N. Didier, and A. A. Clerk, Antibunching and unconventional photon blockade with gaussian squeezed states, Physical Review A 90, 063824 (2014).
  22. A. Nunnenkamp, K. Børkje, and S. M. Girvin, Single-photon optomechanics, Physical review letters 107, 063602 (2011).
  23. S. Huang and G. Agarwal, Normal-mode splitting and antibunching in stokes and anti-stokes processes in cavity optomechanics: radiation-pressure-induced four-wave-mixing cavity optomechanics, Physical Review A 81, 033830 (2010).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com