Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate infinite-horizon predictive control (2111.08319v2)

Published 16 Nov 2021 in eess.SY, cs.SY, and math.OC

Abstract: Predictive control is frequently used for control problems involving constraints. Being an optimization based technique utilizing a user specified so-called stage cost, performance properties, i.e., bounds on the infinite horizon accumulated stage cost, aside closed-loop stability are of interest. To achieve good performance and to influence the region of attraction associated with the prediction horizon, the terminal cost of the predictive controller's optimization objective is a key design factor. Approximate dynamic programming refers to one particular approximation paradigm that pursues iterative cost adaptation over a state domain. Troubled by approximation errors, the associated approximate optimal controller is, in general, not necessarily stabilizing nor is its performance quantifiable on the entire approximation domain. Using a parametric terminal cost trained via approximate dynamic programming, a stabilizing predictive controller is proposed whose performance can directly be related to cost approximation errors. The controller further ensures closed-loop asymptotic stability beyond the training domain of the approximate optimal controller associated to the terminal cost.

Citations (6)

Summary

We haven't generated a summary for this paper yet.