Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Robust Data-Driven Iterative Control Method for Linear Systems with Bounded Disturbances (2405.02537v1)

Published 4 May 2024 in eess.SY and cs.SY

Abstract: This paper proposes a new robust data-driven control method for linear systems with bounded disturbances, where the system model and disturbances are unknown. Due to disturbances, accurately determining the true system becomes challenging using the collected dataset. Therefore, instead of designing controllers directly for the unknown true system, an available approach is to design controllers for all systems compatible with the dataset. To overcome the limitations of using a single dataset and benefit from collecting more data, multiple datasets are employed in this paper. Furthermore, a new iterative method is developed to address the challenges of using multiple datasets. Based on this method, this paper develops an offline and online robust data-driven iterative control method, respectively. Compared to the existing robust data-driven controller method, both proposed control methods iteratively utilize multiple datasets in the controller design process. This allows for the incorporation of numerous datasets, potentially reducing the conservativeness of the designed controller. Particularly, the online controller is iteratively designed by continuously incorporating online collected data into the historical data to construct new datasets. Lastly, the effectiveness of the proposed methods is demonstrated using a batch reactor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. H. J. Van Waarde, J. Eising, M. K. Camlibel, and H. L. Trentelman, “The informativity approach: To data-driven analysis and control,” IEEE Control Systems Magazine, vol. 43, no. 6, pp. 32–66, 2023.
  2. J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Linear tracking MPC for nonlinear systems—part ii: The data-driven case,” IEEE Trans. Automatic Control, vol. 67, no. 9, pp. 4406–4421, 2022.
  3. C. D. Persis and P. Tesi, “Formulas for data-driven control: Stabilization, optimality, and robustness,” IEEE Trans. Automatic Control, vol. 65, no. 3, pp. 909–924, 2020.
  4. M. Rotulo, C. De Persis, and P. Tesi, “Online learning of data-driven controllers for unknown switched linear systems,” Automatica, vol. 145, 2022.
  5. S. Formentin, D. Piga, R. Tóth, and S. M. Savaresi, “Direct learning of LPV controllers from data,” Automatica, vol. 65, pp. 98–110, 2016.
  6. A. Luppi, C. De Persis, and P. Tesi, “On data-driven stabilization of systems with nonlinearities satisfying quadratic constraints,” Systems & Control Letters, vol. 163, pp. 105 206–, 2022.
  7. K. Hu and T. Liu, “Data-driven output-feedback control for unknown switched linear systems,” IEEE Control Systems Letters, vol. 7, pp. 2299–2304, 2023.
  8. B. Nortmann and T. Mylvaganam, “Direct data-driven control of linear time-varying systems,” IEEE Trans. Automatic Control, vol. 68, no. 8, pp. 4888–4895, 2023.
  9. H. J. van Waarde, J. Eising, H. L. Trentelman, and M. K. Camlibel, “Data informativity: A new perspective on data-driven analysis and control,” IEEE Trans. Automatic Control, vol. 65, no. 11, pp. 4753–4768, 2020.
  10. H. J. van Waarde, M. K. Camlibel, and M. Mesbahi, “From noisy data to feedback controllers: Nonconservative design via a matrix S-lemma,” IEEE Trans. Automatic Control, vol. 67, no. 1, pp. 162–175, 2022.
  11. M. Alsalti, V. G. Lopez, J. Berberich, F. Allgöwer, and M. A. Müller, “Data-based control of feedback linearizable systems,” IEEE Trans. Automatic Control, vol. 68, no. 11, pp. 7014–7021, 2023.
  12. C. De Persis, M. Rotulo, and P. Tesi, “Learning controllers from data via approximate nonlinearity cancellation,” IEEE Trans. Automatic Control, vol. 68, no. 10, pp. 6082–6097, 2023.
  13. Z. Hou and S. Xiong, “On model-free adaptive control and its stability analysis,” IEEE Trans. Automatic Control, vol. 64, no. 11, pp. 4555–4569, 2019.
  14. L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforcement learning for control: Performance, stability, and deep approximators,” Annual Reviews in Control, vol. 46, pp. 8–28, 2018.
  15. V. G. Lopez, M. Alsalti, and M. A. Müller, “Efficient off-policy Q-learning for data-based discrete-time LQR problems,” IEEE Trans. Automatic Control, vol. 68, no. 5, pp. 2922–2933, 2023.
  16. G. Pan, R. Ou, and T. Faulwasser, “On a stochastic fundamental lemma and its use for data-driven optimal control,” IEEE Trans. Automatic Control, vol. 68, no. 10, pp. 5922–5937, 2023.
  17. F. Dörfler, P. Tesi, and C. De Persis, “On the certainty-equivalence approach to direct data-driven LQR design,” IEEE Trans. Automatic Control, vol. 68, no. 12, pp. 7989–7996, 2023.
  18. J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive control: In the shallows of the DeePC,” in Proc. of the European Control Conference, 2019-06, pp. 307 – 312.
  19. J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Data-driven model predictive control with stability and robustness guarantees,” IEEE Trans. Automatic Control, vol. 66, no. 4, pp. 1702–1717, 2021.
  20. W. Liu, J. Sun, G. Wang, F. Bullo, and J. Chen, “Data-driven self-triggered control via trajectory prediction,” IEEE Trans. Automatic Control, vol. 68, no. 11, pp. 6951–6958, 2023.
  21. K. Hu and T. Liu, “Robust data-driven predictive control for unknown linear time-invariant systems,” arXiv.org, 2024.
  22. H.-S. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief survey and categorization,” IEEE Trans. Systems, Man, and Cybernetics, Part C, vol. 37, no. 6, pp. 1099–1121, 2007.
  23. K. Hu and T. Liu, “Data-driven H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control for unknown linear time-invariant systems with bounded disturbances,” in Proc. of the IEEE Conference on Decision and Control, 2022, pp. 1423–1428.
  24. T. R. V. Steentjes, M. Lazar, and P. M. J. Van den Hof, “On data-driven control: Informativity of noisy input-output data with cross-covariance bounds,” IEEE Control Systems Letters, vol. 6, pp. 2192–2197, 2022.
  25. J. Miller and M. Sznaier, “Data-driven gain scheduling control of linear parameter-varying systems using quadratic matrix inequalities,” IEEE Control Systems Letters, vol. 7, pp. 835–840, 2023.
  26. H. L. Trentelman, H. J. van Waarde, and M. K. Camlibel, “An informativity approach to the data-driven algebraic regulator problem,” IEEE Trans. Automatic Control, vol. 67, no. 11, pp. 6227–6233, 2022.
  27. H. J. van Waarde, M. K. Camlibel, J. Eising, and H. L. Trentelman, “Quadratic matrix inequalities with applications to data-based control,” SIAM Journal on Control and Optimization, vol. 61, no. 4, pp. 2251–2281, 2023.
  28. G. C. Walsh and H. Y., “Scheduling of networked control systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 57–65, 2001.
  29. W. Liu, J. Sun, G. Wang, F. Bullo, and J. Chen, “Data-driven resilient predictive control under denial-of-service,” IEEE Trans. Automatic Control, vol. 68, no. 8, pp. 4722–4737, 2023.
  30. X.-H. Chang and G.-H. Yang, “New results on output feedback H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control for linear discrete-time systems,” IEEE Trans. Automatic Control, vol. 59, no. 5, pp. 1355–1359, 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.